
Oracle Rdb

Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Release 7.1 for OpenVMS Alpha

June 2001

Part No. A90405-01

This document contains configuration information specific to Oracle
SQL/Services release 7.1.5 for OpenVMS Alpha. This release is shipping in
conjunction with Oracle Rdb release 7.1 for OpenVMS Alpha.

Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide, Release 7.1 for OpenVMS
Alpha

Part No. A90405-01

Copyright © 1995, 2001, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Rdb, Oracle SQL/Services, Oracle Rdb7, and SQL*Net are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

 iii

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xi

Preface... xiii

Intended Audience ... xiii
Operating System Information ... xiii
Structure.. xiv
Related Documentation .. xiv
Conventions.. xiv

1 Introduction to an Oracle SQL/Services System

1.1 Server Management Utilities ... 1-5
1.1.1 Privileges Needed to Manage a Server ... 1-6
1.1.2 Running the SQLSRV_MANAGE Utility ... 1-6
1.1.3 Running the Oracle SQL/Services Manager GUI ... 1-7
1.2 Online Versus Offline Server Management... 1-7

2 Managing an Oracle SQL/Services System

2.1 Getting Started... 2-1
2.2 Planning an Oracle SQL/Services Server Configuration .. 2-2
2.3 Managing Server Components.. 2-3
2.3.1 Managing a Server ... 2-4
2.3.2 Managing a Dispatcher ... 2-8

iv

2.3.3 Managing a Service .. 2-11
2.4 Setting Shared Memory Size .. 2-14
2.5 Setting Up Dispatchers and Transport Selection .. 2-17
2.6 Setting Up Services and Types of Reuse .. 2-18
2.6.1 Session Reusable Universal Services ... 2-20
2.6.2 Session Reusable Database Services .. 2-21
2.6.3 Transaction Reusable Database Services .. 2-22
2.6.4 When to Use Session Reusable Versus Transaction Reusable

Database Services ... 2-24
2.7 Setting Up Security on Servers .. 2-24
2.7.1 Client Identification and Authentication .. 2-25
2.7.2 Service Access Authorization ... 2-26
2.7.3 Database and Data Access Authorization .. 2-27
2.7.4 How Server Security Tiers Work Together .. 2-28
2.8 Deciding Which Types of Service to Provide to Clients .. 2-31
2.8.1 Which Services to Provide?... 2-31
2.8.2 Setting Database Access Authorization? .. 2-32
2.8.3 Specify a Default Connect User Name? .. 2-35
2.8.4 Grant or Restrict Access to a Service? ... 2-36
2.8.5 Provide Arbitrary or Predefined Access to Data? ... 2-36
2.9 Considering Security for Selecting the Service Owner User Name 2-37
2.9.1 Execution Environment for Database Requests... 2-37
2.9.2 Execution Environment for External Functions and Procedures 2-39
2.10 Setting the MIN_EXECUTORS, MAX_EXECUTORS, and

IDLE_EXECUTOR_TIMEOUT Attributes ... 2-41
2.10.1 Configuring a Fixed Number of Executors for a Service.. 2-41
2.10.2 Configuring a Variable Number of Executors for a Service 2-42
2.11 Using an SQL Initialization File .. 2-43
2.12 Understanding Database Access Authorization Models... 2-43
2.12.1 Accessing an Oracle Rdb Database.. 2-43
2.12.2 Setting the Process User Name and the Oracle Rdb System User Name............. 2-46

3 Maintaining an Oracle SQL/Services Server

3.1 Monitoring Server Activity .. 3-1
3.2 Monitoring Client Connections ... 3-2

v

3.2.1 Client Connection States for Session Reusable Services... 3-2
3.2.2 Client Connection States for Transaction Reusable Database Services.................. 3-3
3.3 Recovering from Failures ... 3-5
3.3.1 Monitor Process Failures... 3-5
3.3.2 Dispatcher Process Failures .. 3-6
3.3.3 Executor Process Failures.. 3-6
3.4 Isolating Problems... 3-6
3.4.1 Inspecting Log Files ... 3-6
3.4.2 Investigating Different Types of Problems... 3-9
3.5 Solving Server Errors .. 3-12
3.6 Reporting Software Problems.. 3-12

4 Management Commands

4.1 Syntax Conventions .. 4-1
4.2 How SQLSRV_MANAGE Commands Work ... 4-4

–input Switch ... 4-9

–output Switch... 4-10

@ Command ... 4-11

ALTER DISPATCHER Command .. 4-12

ALTER SERVER Command... 4-16

ALTER SERVICE Command ... 4-20

CLOSE Command ... 4-29

CONNECT TO SERVER Command... 4-30

CREATE DISPATCHER Command ... 4-33

CREATE SERVER Command.. 4-37

CREATE SERVICE Command .. 4-41

DISCONNECT SERVER Command... 4-49

DROP Command... 4-50

DROP SERVER Command .. 4-52

EXIT Command ... 4-53

GRANT USE ON SERVICE Command.. 4-54

HELP Command ... 4-56

vi

KILL EXECUTOR Command .. 4-57

OPEN Command... 4-59

RESTART SERVER Command .. 4-60

REVOKE USE ON SERVICE Command.. 4-62

SET CONFIGURATION_FILE Command... 4-64

SET CONFIRM Command... 4-66

SET CONNECTION Command .. 4-67

SET OUTPUT Command.. 4-70

SET VERIFY Command .. 4-71

SHOW CLIENTS Command.. 4-72

SHOW CONNECTIONS Command .. 4-76

SHOW DISPATCHER Command... 4-77

SHOW SERVER Command ... 4-79

SHOW SERVICE Command.. 4-81

SHOW SETTINGS Command ... 4-84

SHOW VERSION Command... 4-85

SHUTDOWN DISPATCHER Command... 4-86

SHUTDOWN SERVER Command ... 4-87

SHUTDOWN SERVICE Command.. 4-88

START DISPATCHER Command... 4-89

START SERVER Command ... 4-90

START SERVICE Command.. 4-92

Index

vii

List of Examples

2–1 Default Universal Service with Database Access Authorization Set
to Connect User Name.. 2-32

2–2 Universal Service with Database Access Authorization Set to Service Owner.......... 2-33
2–3 Session Reusable Database Service with Database Access Authorization

Set to Connect User Name ... 2-34
2–4 Transaction Reusable Database Service with Database Access Authorization

Set to Service Owner ... 2-34

viii

List of Figures

1–1 Simplest Client/Server Architecture .. 1-1
1–2 Oracle SQL/Services Server System... 1-2
1–3 Oracle SQL/Services Client/Server Architecture .. 1-3
2–1 Oracle SQL/Services Session Reusable Universal Services .. 2-21
2–2 Oracle SQL/Services Session Reusable Database Services ... 2-22
2–3 Oracle SQL/Services Transaction Reusable Database Services.................................... 2-23
2–4 Oracle SQL/Services Server Security ... 2-29
3–1 Client Connection States for Session Reusable Services .. 3-3
3–2 Client Connection States for Transaction Reusable Database Services 3-4

ix

List of Tables

1–1 Oracle SQL/Services Server Management Online and Offline Commands 1-8
2–1 Default Settings for Server Object Attributes.. 2-6
2–2 Default Settings for Dispatcher Object Attributes .. 2-9
2–3 Default Settings for Service Object Attributes... 2-12
2–4 Oracle SQL/Services Service Attributes .. 2-20
2–5 When to Use Session Reusable Database Services Versus Transaction

Reusable Database Services ... 2-24
2–6 Comparison of Service Combinations Between Previous Versions and

Version 7.0 and Higher... 2-28
2–7 Suggested Minimum Process Quota Values for the Service Owner Account............ 2-38
2–8 Suggested Minimum Process Quota Values for Working Set Parameters for

the Service Owner Account ... 2-39
4–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a Command 4-5
4–2 SQLSRV_MANAGE Environment Commands and Switches 4-7
4–3 Default Schema Name Used When an Executor Is Bound to a

Multischema Database.. 4-24
4–4 Default Schema Name Used When an Executor Is Bound to a

Multischema Database.. 4-45

x

xi

Send Us Your Comments

Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide, Release 7.1 for
OpenVMS Alpha

Part No. A90405-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle Rdb
■ Postal service:

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

Oracle Rdb is a general-purpose database management system based on the
relational data model.

Oracle SQL/Services, a client/server component of Oracle Rdb, enables a client
application program, invoked on a remote client computer running on a supported
operating system or transport, to access Oracle Rdb databases and other databases
supported by SQL on an OpenVMS server system. See the Guide to Using the Oracle
SQL/Services Client API for a complete list of supported clients.

This manual describes how to maintain and tune an Oracle SQL/Services server
system.

Intended Audience
This manual is written for the system manager responsible for maintaining and
fine-tuning Oracle SQL/Services. System managers should refer to the installation
guide, which provides information important to the installation of an Oracle
SQL/Services system.

Operating System Information
You can find information about the versions of the operating system and optional
software that are compatible with this release of Oracle Rdb and Oracle
SQL/Services in the installation guides and release notes for Oracle Rdb7 and
Oracle SQL/Services.

Contact your Oracle representative if you have other questions about compatibility.

xiv

Structure
This manual contains the following chapters:

Related Documentation
For more information, see the other manuals in this documentation set, especially
the following:

■ New and Changed Features for Oracle Rdb, Release 7.1

■ Oracle Rdb7 Guide to SQL Programming

■ Oracle Rdb7 SQL Reference Manual

■ Guide to Using the Oracle SQL/Services Client API

■ The release notes and installation documents for Oracle Rdb Release 7.1 and
Oracle SQL/Services Release 7.1.5

■ Oracle Rdb7 Guide to Database Maintenance

The Oracle Rdb Oracle SQL/Services Release 7.1.5 Release Notes for Release 7.1.5
and the Oracle Rdb Release Notes, Release 7.1.0 for OpenVMS Alpha for Release 7.1
are provided only as part of the software kit as PostScript and .txt files in the
following directory location by platform unless otherwise specified:

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS Alpha software.
Release 7.1 of Oracle Rdb software is often referred to as V7.1 or Rdb7.

Chapter 1 Introduces the Oracle SQL/Services system.

Chapter 2 Describes how to manage an Oracle SQL/Services system.

Chapter 3 Describes how to maintain an Oracle SQL/Services server.

Chapter 4 Describes the Oracle SQL/Services system management commands.

Document OpenVMS

Oracle Rdb Oracle SQL/Services Release 7.1.5
Release Notes

SYS$HELP

Oracle Rdb Release Notes, Release 7.1.0 for
OpenVMS Alpha

SYS$HELP

xv

The SQL interface to Oracle Rdb is referred to as SQL. This interface is the Oracle Rdb
implementation of the SQL standard adopted in 1999, in general referred to as the
ANSI/ISO SQL standard or SQL:1999. See the Oracle Rdb Release Notes, Release 7.1.0 for
OpenVMS Alpha for addition information about this SQL standard.

Beginning with release 7.1, Oracle SQL/Services is a multiversion-only kit. The
installation installs files using a variant naming convention. That is, variant file
names and names of utilities may have a two-digit version number appended as the
last two characters of its name. For example, the management client is SQLSRV_
MANAGE71 and its log files are *71.log, and so forth, if Oracle SQL/Services
release 7.1.5 is installed as a multiversion kit on the same node as a previous version
of Oracle SQL/Services.

OpenVMS means the OpenVMS Alpha operating systems.

The following conventions are also used in this manual:

See Section 4.1 for more information on syntax conventions used by the SQLSRV_
MANAGE utility.

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

$ The dollar sign represents the DIGITAL Command Language prompt in
OpenVMS.

boldface text Boldface type in text indicates a term defined in the text.

monospaced
boldface
text

Monospaced boldface type in text indicates user input.

xvi

Introduction to an Oracle SQL/Services System 1-1

1
Introduction to an Oracle SQL/Services

System

A client/server system in its simplest form consists of a client, a network, and a
server system. A client is a software program that uses a database application
programming interface (API) to make database requests of a server, as shown in
Figure 1–1. The client may reside on the same platform as the server. Typically,
however, the client application runs on a workstation or PC and accesses a database
on a large server platform using a network that supports several transport
protocols.

Figure 1–1 Simplest Client/Server Architecture

An Oracle SQL/Services server is a collection of cooperating processes on one node
that includes a dispatcher process and a pool of executor processes that work on
behalf of a service, as shown in Figure 1–2. The dispatcher process handles all
network communication between the client and the server. It reads client requests,
queues these requests for the executors of a service, and returns the responses from
the executors of a service back to the client. An executor process works on behalf of
a service and accepts the client requests from the dispatcher's queue, invokes the

Client

Client Application

Server

Database API
Server

1-2 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

database engine to process the requests, and returns the results to the dispatcher. A
service is a set of attributes that describes how clients access a database.

Figure 1–2 Oracle SQL/Services Server System

The Oracle SQL/Services server system also includes a monitor process to manage
and control the server, an SQLSRV_MANAGE utility that runs on an OpenVMS
local or remote system, or an Oracle SQL/Services Manager GUI server
management utility that runs as a Windows client, and a configuration file in which
to store server component definitions, as shown in Figure 1–3.

Client

DispatcherClient Application

Server

Oracle Rdb or
other databases

Database API

Executor

Executor Pool

 Service

Executor

Introduction to an Oracle SQL/Services System 1-3

Figure 1–3 Oracle SQL/Services Client/Server Architecture

An Oracle SQL/Services client is a software program that accesses data by selecting
a service provided by a server using an agreed upon interface such as the Oracle
SQL/Services API, the Microsoft ODBC API, or the Oracle OCI interface. The server
responds by receiving and processing client requests and sending the results back to
the client.

A network is made up of communications hardware and software through which
the client APIs communicate with the Oracle SQL/Services server. Request
messages from the client and response messages from the server travel over a
DECnet, Transmission Control Protocol/Internet Protocol (TCP/IP), NetWare
(IPX/SPX), AppleTalk-DECnet gateway, or SQL*Net communications link.

Server
An Oracle SQL/Services server describes the attributes of a collection of
cooperating processes on one node that provides one or more services. The server in
general includes all server component attribute definitions, which are contained in a
configuration file. See Service and Dispatcher topics, included in this list, for more
information about these server components. For the server object specifically, the
attributes include information such as the version of the server, the configuration

Client Application
Client Application

Monitor

Desktop Systems

Client

Dispatcher

Client Application

Server

Oracle ODBC
Driver for Rdb

Oracle Rdb or
other databases

SQLSRV_MANAGE

management connections

Configuration File

Executor

Executor Pool

Service C

Executor
Executor

Executor Pool

Service B

Executor
Executor

Executor Pool

Service A

Executor
SQL/Services Manager

1-4 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

file specification, the size of shared memory, and what network transports are
supported for server management.

There can be only one server defined per configuration file. You can have only one
server per version of Oracle SQL/Services started on a node at any given time.

Service
An Oracle SQL/Services service is a set of attributes that describes how clients
access a database. Oracle SQL/Services accommodates the needs of different clients
by supporting a range of service attributes that you tailor for each service provided
by a server. The definition of a service includes information such as who can use the
service, the database that is accessed by the service, the database engine version
used by the service, how many clients can simultaneously use the service, and the
number of executors that will be working on behalf of the service.

Executor
An Oracle SQL/Services executor is the process that works on behalf of a service.

An executor accepts client requests from dispatchers, calls SQL to process the
requests, and returns the results to dispatchers. There is a pool of executor processes
for each service that is started.

Dispatcher
An Oracle SQL/Services dispatcher is a process that is responsible for handling
network communications for the clients and for the routing and scheduling of client
requests to executors of a service. A dispatcher supports all services defined for a
server. A single dispatcher typically supports more than one network protocol, but
can support a single protocol. All clients except system management clients connect
directly to a dispatcher.

Monitor
An Oracle SQL/Services monitor process provides overall management and control
for the server, such as server startup and shutdown, reading and writing the
configuration database, monitoring functions, and other management operations.

SQLSRV_MANAGE Client
The Oracle SQL/Services server management command-line interface lets you
manage an Oracle SQL/Services server from an OpenVMS, Digital UNIX, or
Windows NT system.

Server Management Utilities

Introduction to an Oracle SQL/Services System 1-5

Oracle SQL/Services Manager Client GUI
The Oracle SQL/Services server management graphical user interface (GUI) utility
lets you manage an Oracle SQL/Services server from any Windows client. The
Oracle SQL/Services Manager GUI runs on Windows 95, Windows 98, Windows
2000, and Windows NT X86.

Configuration file
A configuration file contains all defined attributes for one server and its
components, which include all service definitions, dispatcher definitions, and the
list of users that are authorized to access the services provided by that server. This is
also known as an Oracle SQL/Services server configuration, in that it represents
one set of component definitions that are managed together for a server. Only one
server can be defined in a configuration file. Typically, each server node has its own
configuration file; however, it is possible to share a configuration file among
multiple nodes in an OpenVMS cluster.

1.1 Server Management Utilities
You can manage an Oracle SQL/Services server in the following ways:

■ Use the SQLSRV_MANAGE utility

You can use the SQLSRV_MANAGE utility from a local or remote node on an
OpenVMS system and manage the server online or offline (you must be on a
local node to manage the server offline).

Usually, you use the SQLSRV_MANAGE utility to manage a server
configuration online by establishing a system management connection to a
running server, then performing system management functions that operate on
the running server as well as on the configuration file. In addition, you can use
the SQLSRV_MANAGE utility to manage a server configuration offline by
directly manipulating server component attributes in a configuration file. The
only system management functions that you must perform offline are creating a
new server configuration and starting a server. The SQLSRV_MANAGE utility
accepts commands from the standard input device or from script files, and can
be run interactively or in a batch job on an OpenVMS system.

■ Use the Oracle SQL/Services Manager graphical user interface (GUI)

You can use the Oracle SQL/Services Manager graphical user interface (GUI)
from a remote Windows client and manage the server online using one of the
following clients: Windows 95, Windows 98, Windows 2000, or Windows NT
X86.

Server Management Utilities

1-6 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

You use the Oracle SQL/Services Manager GUI to manage a server
configuration online by establishing a system management connection to a
running server, then performing system management functions that operate on
the running server or the configuration file or both.

You cannot use the Oracle SQL/Services Manager GUI to perform the offline
server management functions of creating a new server configuration, starting a
server, or shutting down a running server; nor can you execute script files.
However, you can modify and restart a running server using the Oracle
SQL/Services Manager GUI.

Usually, you will use either of these two utilities interactively to manage the server
and its components online. For most server management tasks, use the Oracle
SQL/Services Manager GUI because it is easy to learn and use. The only time you
may need to use the SQLSRV_MANAGE utility is to start a server or to run any
special scripts you might create.

See Section 2.3 for more information about managing a server using the SQLSRV_
MANAGE utility. For more information about managing a server using the Oracle
SQL/Services Manager GUI, invoke the utility on a Windows client and select the
Help pull-down menu.

1.1.1 Privileges Needed to Manage a Server
To start a server using the SQLSRV_MANAGE utility on OpenVMS, you must use
an account that has been granted the SETPRV privilege or that has been granted all
privileges. To make offline modifications to a server using the SQLSRV_MANAGE
utility on OpenVMS, you must use an account that has been granted the NETMBX,
SYSLCK, and SYSPRV privileges. To make online modifications to a server using
the SQLSRV_MANAGE utility or the Oracle SQL/Services Manager GUI, you must
use an account that has been granted use of the SQLSRV_MANAGE system
management service for that server; however, you are not required to use an
account that has been granted elevated privileges.

These privilege requirements are either less restrictive or identical to those needed
to install Oracle SQL/Services on the OpenVMS platform. For more information,
see the installation documentation for Oracle Rdb and Oracle SQL/Services.

1.1.2 Running the SQLSRV_MANAGE Utility
To run the SQLSRV_MANAGE utility, you first define a symbol to invoke the utility
as follows:

sqlsrv_manage71 :== SYSSYSTEM:sqlsrv_manage71

Online Versus Offline Server Management

Introduction to an Oracle SQL/Services System 1-7

You then enter the command sqlsrv_manage71 to invoke the SQLSRV_MANAGE
utility. To use the SQLSRV_MANAGE utility interactively, invoke the utility, then
enter system management commands in response to the SQLSRV> command-line
prompt. To manage a server online, the first command you use is usually the
CONNECT TO SERVER command. To manage a server offline, you first use a SET
CONFIGURATION_FILE command to specify the name of the server configuration
file, if the file is not stored in the default location (see the SET CONFIGURATION_
FILE Command for more information).

You can also use scripts with the SQLSRV_MANAGE utility. A SQLSRV_MANAGE
script is a file containing the same commands that you would enter at the SQLSRV>
prompt. You can invoke a SQLSRV_MANAGE script interactively at the SQLSRV>
prompt using the @ command. Alternatively, you can invoke the SQLSRV_
MANAGE utility to read system management commands directly from a script. See
the –input Switch in Chapter 4 for more information.

Scripts are a practical tool for making changes to a server on a regular basis. For
example, suppose you want to increase the minimum and maximum number of
executors for a service to meet a peak load condition. You can use one script to
increase the values and another to decrease the values. You can automate the
execution of the scripts using batch jobs.

1.1.3 Running the Oracle SQL/Services Manager GUI
To run the Oracle SQL/Services Manager GUI, click the Oracle SQL/Services
Manager GUI icon to bring up the Connect To Server window and enter the node
name, user name, and password. Select the transport and the TCP/IP port ID,
DECnet object name that you want to use to establish the connection. Once
connected, you can begin to manage the server.

1.2 Online Versus Offline Server Management
You can manage a server either online or offline using the SQLSRV_MANAGE
utility.

Online Server Management
Typically, you manage the server online. To manage a server online, you always
connect to the server using the CONNECT TO SERVER command. Once connected,
any changes you make to the server are written to the configuration file. If you alter
a dynamic attribute, the change is also made to the running server. See Section 2.3.1,

Online Versus Offline Server Management

1-8 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Section 2.3.2, and Section 2.3.3 for a list of dynamic attributes. If you alter a
nondynamic attribute of an object that is started, the system management utility
displays a message that the object must be restarted for the change to take effect.
The only time you need to restart the server is if the change to the server is to a
nondynamic attribute of the server object itself, in which case changes take effect
upon a server restart operation.

Offline Server Management
On occasion, you may need to manage a server offline to recover from an alteration
that rendered the server unusable, such as setting too low a value for shared
memory. To manage a server offline, you must use the SQLSRV_MANAGE utility.
You cannot manage a server offline using the Oracle SQL/Services Manager GUI. If
the configuration file is not stored in the default location (see the SET
CONFIGURATION_FILE Command for more information), you must first select
the configuration file by using the SET CONFIGURATION_FILE command before
issuing any system management commands. Usually, you will manage a server
offline only when the server is not running. However, you can manage a server
offline even if the server is running. Any changes you make to the server
configuration are written to the configuration file but do not affect the running
server until the objects that have been changed are restarted. You must restart the
entire server for a change to an attribute of the server object itself to take effect. You
need only shut down and start the particular dispatcher or service for a change to
an attribute of a dispatcher or service object to take effect. The only exception is that
if you grant or revoke use of a service to or from a user name or identifier, then the
change takes effect immediately.

Table 1–1 summarizes which Oracle SQL/Services server management commands
can be performed online, offline, or both and any restrictions that may apply.

Table 1–1 Oracle SQL/Services Server Management Online and Offline Commands

Command Online Offine Comments

ALTER DISPATCHER X X Offline changes do not affect a running
dispatcher.

ALTER SERVER X X Offline changes do not affect a running
server.

ALTER SERVICE X X Offline changes do not affect a running
service.

CONNECT TO SERVER X – For online server management only.

CREATE DISPATCHER X X Can create a dispatcher either online or
offline.

Online Versus Offline Server Management

Introduction to an Oracle SQL/Services System 1-9

CREATE SERVER – X Can only create a server offline.

CREATE SERVICE X X Can create a service either online or
offline.

DISCONNECT SERVER X – For online server management only.

DROP DISPATCHER X X Can delete a dispatcher either online or
offline.

DROP SERVER – X Can only delete a server offline.

DROP SERVICE X X Can delete a service either online or
offline.

GRANT USE ON SERVICE X X Offline changes affect running server.

KILL EXECUTOR X – Can only kill an executor online.

RESTART SERVER X – Can only restart a server online.

REVOKE USE ON
SERVICE

X X Offline changes affect running server.

SET CONFIGURATION_
FILE

– X For offline server management only.

SET CONNECTION X – For online server management only.

SHOW DISPATCHER X X Can display definitional attributes of a
dispatcher online or offline; can only
show the run-time attributes of a
dispatcher (such as its state) online.

SHOW SERVER X X Can display definitional attributes of a
server online or offline; can only show
the run-time attributes of a server (such
as its state) online.

SHOW SERVICE X X Can display definitional attributes of a
service object online or offline; can only
show the run-time attributes of an
object (such as its state) online.

SHUTDOWN
DISPATCHER

X – Can only shut down a dispatcher
online.

SHUTDOWN SERVER X – Can only shut down a server online.

SHUTDOWN SERVICE X – Can only shut down a service online.

Table 1–1 (Cont.) Oracle SQL/Services Server Management Online and Offline

Command Online Offine Comments

Online Versus Offline Server Management

1-10 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Chapter 2 and Chapter 3 describe managing and maintaining the server. Chapter 4
contains reference material that describes SQLSRV_MANAGE commands. These
chapters are written primarily for the Oracle SQL/Services system administrator
who is using the SQLSRV_MANAGE utility and its command-line interface. As
appropriate, only the command-line interface of SQLSRV_MANAGE commands
and syntax are used in text and examples in these chapters.

An Oracle SQL/Services system administrator who is using the Oracle
SQL/Services Manager GUI client from a Windows-based PC system can refer to
Chapter 2 and Chapter 3, but should be aware that the names of commands and
syntax vary between the SQLSRV_MANAGE command-line interface and the
Oracle SQL/Services Manager GUI, and no attempt is made to describe these
differences, as most differences are relatively minor. Refer to the Oracle
SQL/Services Manager GUI client Windows help for more specific information.

START DISPATCHER X – Can only start a dispatcher online.

START SERVER – X Can only start a server offline.

START SERVICE X – Can only start a service online.

Table 1–1 (Cont.) Oracle SQL/Services Server Management Online and Offline

Command Online Offine Comments

Managing an Oracle SQL/Services System 2-1

2
Managing an Oracle SQL/Services System

Managing an Oracle SQL/Services system requires knowledge of the client and
network components, together with dispatchers, services, and a server, as described
in Chapter 1. You should have a general understanding of how each component
works with other components in the client/server architecture and how the
components within the server system operate. This chapter describes how to create
and manage the server components.

2.1 Getting Started
After you install and start the default Oracle SQL/Services server, you may want to
perform some additional tasks to ensure its optimum performance and to
troubleshoot problems. These tasks include:

■ Planning an Oracle SQL/Services server configuration

■ Managing server components

■ Setting shared memory size

■ Setting up dispatchers and transport selection

■ Setting up services and types of reuse

■ Setting up security on servers

■ Deciding which types of service to provide to clients

■ Considering security for selecting the service owner user name

■ Setting MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_EXECUTOR_
TIMEOUT attributes

■ Using an SQL initialization file

Planning an Oracle SQL/Services Server Configuration

2-2 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ Understanding how Oracle SQL/Services implements the database access
authorization models

Each topic is discussed in the sections that follow.

2.2 Planning an Oracle SQL/Services Server Configuration
Your initial working Oracle SQL/Services server is defined by a configuration file.
That file contains object definitions and characteristics for the server, dispatchers,
services, and a set of authorized users for each service. You can display the current
definition of each object with a SHOW command, read through the attribute
settings, and from this basic understanding, take the following steps to plan your
server configuration:

1. Determine your own requirements for your server system.

2. Learn about each object and how best to manage it.

3. Apply what you learned toward meeting your server system requirements.

Determining Server System Requirements
As the Oracle SQL/Services system administrator, you must determine the
requirements for your server system. You should investigate the following:

■ Is Oracle SQL/Services installed on a single node or in a cluster? Do different
nodes require different dispatchers and services?

■ What do you know about your user community? How many clients are there in
total? How many clients will use the system at peak periods?

■ What transports are available for client/server communication? How many
ports are available for each transport?

■ What version of Oracle Rdb do you have installed?

■ What are the specific applications users want to run? Are users attaching to the
same database or many different databases? What kinds of transactions will be
run?

These are the most important questions to answer. Other questions may arise as you
find answers to these questions that will help you to understand your own server
requirements. As you seek answers to these questions, you should also begin to
devise a plan for how to best meet the server needs of your user community and
how to tune your server system to achieve maximum performance.

Managing Server Components

Managing an Oracle SQL/Services System 2-3

Learning About Server Objects
To start, ask the following questions about each server object:

■ Which attributes do I need to monitor?

■ Which attributes should I be most concerned about managing?

To answer these questions, it is important to understand the meaning of the default
value of each attribute and then determine which attributes need to be monitored
and adjusted. In general, all default settings of attributes for the default server
system are sufficient to get started. Table 2–1, Table 2–2, and Table 2–3 provide a
summary of the default values for the server, dispatcher, and service objects.
Following each table is a brief description of which attributes to monitor and adjust.

Achieving Server System Requirements
By answering specific questions about the most important attributes for each server
component, you can determine what modifications you may need to make to your
server system. As you implement your plan, you learn how to create and alter
server component objects and apply these changes toward meeting your server
system requirements.

As you learn how to monitor and tune each object, you can begin to optimize the
performance of the server and tailor your Oracle SQL/Services server to make it
ideal for your database client/server environment. For example, once you know
what applications your users want to run, you can decide on the kinds of services to
provide for these client applications.

The most important items that you should consider for establishing a running
server are discussed in Section 2.3, Section 2.4, Section 2.5, Section 2.6, Section 2.7,
and Section 2.8.

After you tailor an Oracle SQL/Services server to meet your client/server
requirements, the next task is to understand more about maintaining the server (see
Chapter 3 for more information).

2.3 Managing Server Components
Managing server components consists of managing the server, dispatchers, and
services and performing tasks such as creating these objects, starting, shutting
down, and restarting these objects, altering object attributes, and deleting these
objects. Section 2.3.1 through Section 2.3.3 describe managing each of these objects.

Managing Server Components

2-4 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.3.1 Managing a Server
Managing a server involves knowing how to create a server; how to start, stop, and
restart a server; and how to tailor the attributes of a server to suit the specific
requirements of your client/server configuration.

Creating a Server
When you install Oracle SQL/Services, the installation procedure automatically
creates and starts a server on that node. Unless you encounter a nonrecoverable
error condition that renders the configuration file unusable, you normally will not
have to create or re-create a server on a node on which you performed the Oracle
SQL/Services installation. However, you should periodically save a backup copy of
your configuration file. See Copying a Configuration File in this section for details
of how to make a copy of a configuration file.

If your configuration file becomes corrupted, due perhaps to a disk failure, and you
do not have a backup copy, then you can delete the corrupted file and re-create your
initial server configuration using the SQLSRV_CREATE71.COM command
procedure. You can also use this procedure to re-create the Oracle RMU dispatcher
and Oracle RMU service if you delete them and subsequently need to re-create
them.

In an OpenVMS cluster environment, the installation procedure creates and starts a
server only for the node on which you perform the installation. If you plan to use
Oracle SQL/Services on other nodes in the cluster, you must create and start a
server on each of those nodes or make a single configuration file available to the
other nodes, then start the server on those nodes.

There are two ways to create and start a server on other nodes in an OpenVMS
cluster:

■ Use the SQLSRV_CREATE71.COM procedure provided by the installation

The preferred method to create and start a server on another node in a cluster is
to invoke the SQLSRV_CREATE71.COM DCL command procedure provided by
the Oracle SQL/Services installation procedure in the SYS$MANAGER
directory (see the Oracle SQL/Services Installation Guide for more information).
This procedure is used by the installation procedure itself and so will create and
start a server that is identical to the one created on the node where the original
installation was performed.

■ Copy a configuration file from another node in the cluster

Another way to create a server on another node in a cluster is to copy a
configuration file to that node, make any necessary changes for the node, then

Managing Server Components

Managing an Oracle SQL/Services System 2-5

start the server on that node. This approach is more difficult because it can be
error-prone, but nevertheless is an option. See Copying a Configuration File in
this section for more information.

Alternatively, you may choose to share a single configuration file among multiple
nodes in a cluster. The simplest way to make a single configuration file available to
all nodes in a cluster is to shut down the server on the node on which you
performed the installation, then rename the SQLSRV_CONFIG_FILE71.DAT file
from the SYS$SPECIFIC:[SYSMGR] directory to the SYS$COMMON:[SYSMGR]
directory. If you choose to share a single configuration file among multiple nodes in
a cluster, you must take care not to delete an object on one node if you intend to
continue to use it on other nodes.

You do not need to perform additional tasks if you want to provide exactly the same
dispatchers and services on each node in the cluster. However, if you need to
support different network protocols or provide specific services on different nodes
in the cluster, then you must tailor your configuration accordingly. To provide
different dispatchers or services on different nodes, you must set the AUTOSTART
attribute to OFF for any services and dispatchers that should not be started on all
nodes, then write a SQLSRV_MANAGE script for each node that starts only the
required dispatchers and services for that node. Note that you cannot configure a
service or dispatcher object in a shared configuration file to have different attributes
for different nodes.

Caution: Oracle Corporation recommends that you do not make
offline modifications to a configuration file if there is a server
running that is using the same file. In this situation, the SQLSRV_
MANAGE utility does not prevent you from deleting a dispatcher
or service object offline while the dispatcher or service is running.

Similarly, neither the SQLSRV_MANAGE utility nor the Oracle
SQL/Services Manager utility prevents you from deleting a
dispatcher or service object online while the dispatcher or service is
running on a different node in an environment where two or more
nodes share the same configuration file. If this happens, then the
SQLSRV_MANAGE utility displays a warning message if you
show a dispatcher or service that has been deleted but that is still
running.

The Oracle SQL/Services Manager utility displays the delete icon
(no-entry sign) for a dispatcher or service that has been deleted but
is still running.

Managing Server Components

2-6 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Starting, Shutting Down, and Restarting a Server
The server is automatically started by the SQLSRV_CREATE71.COM DCL
command procedure when a system boots. The server is automatically shut down
when a system shuts down. Generally, the only time you will need to restart a
server is if you alter a nondynamic attribute of the server object, in which case you
must restart the server for the change to take effect.

Altering a Server
Once you create a server, you may need to alter some server attributes, such as the
maximum amount of shared memory available to the server. Table 2–1 lists all of the
attributes of a server, their default values, and indicates if an attribute can be
modified dynamically. Following the table is a brief description of the major server
attributes.

Oracle SQL/Services uses shared memory for interprocess communications. The
MAX_SHARED_MEMORY_SIZE attribute is the only server attribute you need to
monitor on a periodic basis using the SHOW SERVER Command. Section 2.4
describes what to look for and when to make adjustments.

The server uses network ports to listen to system management clients. These
network ports must be unique in a multiversion environment because you can only
have one version of Oracle SQL/Services using the default network ports. During a
multiversion installation, you must specify what alternate network ports you want
the server to use. You need not make any further changes to these network ports
unless you decide to make the current version of Oracle SQL/Services the default,
and you want to use the default system management network ports. If system
management clients are having problems connecting, use the SHOW SERVER
command to monitor these network ports and to ensure each is running.

Table 2–1 Default Settings for Server Object Attributes

Attribute Default Setting
Dynamic
Attribute

MAX_SHARED_MEMORY_SIZE 2000 kilobytes

Configuration File SYS$MANAGER: SQLSRV_CONFIG_FILE71.DAT

PROCESS_STARTUP_TIMEOUT 0 Yes

PROCESS_SHUTDOWN_TIMEOUT 0 Yes

Network ports DECnet - SQLSRV_SERVER

Network ports TCP/IP - 2199

Managing Server Components

Managing an Oracle SQL/Services System 2-7

See the ALTER SERVER Command for more information about altering server
attributes.

If you alter a dynamic attribute of a running server online, then the change takes
effect immediately. However, if you alter a nondynamic attribute of a running
server online, then you must restart the server for the change to take effect.

If you alter a nondynamic attribute of a running server using the SQLSRV_
MANAGE utility, it displays an alternate success status indicating that you must
restart the server for the change to take effect. For example:

SQLSRV> ALTER SERVER MAXIMUM_SHARED_MEMORY_SIZE 4000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV>

The SQLSRV_MANAGE utility displays the values of any altered nondynamic
attributes that will take effect when the server is restarted. For example:

** The Server will be updated as follows when it is restarted **
 Max Shared memory size: 4000

If you alter a nondynamic attribute of a running server using the Oracle
SQL/Services Manager utility, it displays an alternate success status indicating that
you must restart the server for the change to take effect and inquires if you want to
restart the server immediately. The Oracle SQL/Services Manager utility highlights
the values of any altered nondynamic attributes that will take effect when the server
is restarted by displaying a flag-shaped icon next to each attribute.

When you restart a server, all dispatchers and services of the server are also
restarted, and all client network connections to the server are disconnected.
Therefore, you should schedule alterations to the server object when few or no
clients will be using the server.

Copying a Configuration File
However, you can use the COPY command to make a copy of a configuration file
only if there is not a running server that is using the file. To make a copy of a
configuration file currently being used by a running server, you must use the DCL
BACKUP/IGNORE=INTERLOCK command.

Deleting a Server
The only time you need to delete a server is when the configuration file has become
corrupt, due perhaps to a disk failure, and is completely unusable. Deleting a server

Managing Server Components

2-8 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

is an offline operation and deletes the configuration file (see the DROP SERVER
Command). Alternatively, you can use the DELETE command.

If, for some reason, you must delete a running server, you must first shut it down
online (see the SHUTDOWN SERVER Command) and then delete it offline using
the DROP SERVER command.

2.3.2 Managing a Dispatcher
Managing a dispatcher involves knowing how to create a dispatcher; how to start,
stop, and restart a dispatcher; and how to tailor the attributes of a dispatcher to suit
the specific requirements of your client/server configuration.

Creating a Dispatcher
The Oracle SQL/Services installation procedure and the SQLSRV_CREATE71.COM
command procedure creates and starts three dispatchers named SQLSRV_DISP for
use by Oracle SQL/Services clients, OCI_DISP for use by OCI clients, and RMU_
DISP for use by Oracle RMU clients.

If you plan to use the SQL*Net network transport, then you will create another
dispatcher after you decide which network ports you will use. You might also create
other dispatchers if you decide to provide individual dispatcher processes for each
transport available on your network. When you create a new dispatcher, you must
ensure that the network ports that you specify are not used by any other
dispatchers on the node. If a dispatcher is unable to listen on any of its network
ports, it writes an error message to its log file and terminates.

Starting, Shutting Down, and Restarting a Dispatcher
Dispatchers that have the AUTOSTART attribute set to ON are automatically
started when you install Oracle SQL/Services and whenever a server is started. If
necessary, you can disable this action by starting a server with the START SERVER
AUTOSTART OFF command. Dispatchers are automatically shut down when the
server shuts down. One of the few times you must shut down a dispatcher is if it
failed to start. A failed dispatcher is always left in a failed state and must be shut
down. Once shut down, the reason for failure, which can be due to an incorrectly
specified argument value in its definition, can be corrected using an ALTER
DISPATCHER command, and then the dispatcher can be started using the START
DISPATCHER command. Generally, the only time you will need to restart a
dispatcher is if you alter a nondynamic attribute of a dispatcher object, in which
case you have to restart the dispatcher for the change to take effect.

Managing Server Components

Managing an Oracle SQL/Services System 2-9

Altering a Dispatcher
As circumstances change, you may find it necessary to alter some dispatcher
attributes. For example, to support additional users, you may need to increase the
maximum number of connections allowed to a dispatcher. To provide better
performance, you may want to increase the maximum client buffer size.

Because you run multiple versions of the Oracle SQL/Services server, you may
want to alter the network port specifications to use the default network ports when
you stop using the older version of Oracle SQL/Services.

Table 2–2 lists all of the attributes of a dispatcher and their default values, and
indicates if an attribute can be modified dynamically. Following the table is a brief
description of the major dispatcher attributes.

Set a higher value for the MAX_CONNECTIONS argument if you expect more than
100 clients to connect to the dispatcher at the same time.

Set a higher value for the MAX_CLIENT_BUFFER_SIZE argument if you know
certain applications will benefit by using a larger buffer size.

The dispatcher uses network ports to listen to Oracle SQL/Services, Oracle ODBC
Driver for Rdb, and Oracle OCI clients.

Table 2–2 Default Settings for Dispatcher Object Attributes

Attribute Default Setting
Dynamic
Attribute

AUTOSTART ON

MAX_CONNECTIONS 100

IDLE_USER_TIMEOUT 0 Yes

MAX_CLIENT_BUFFER_SIZE 5000

Log File SYS$MANAGER:<dispatcher-name>.LOG

Dump File SYS$MANAGER:<dispatcher-name>.DMP

Message Protocol SQLSERVICES

Network ports DECnet - 81

Network ports TCP/IP - 118

Network ports IPX/SPX - 0x84b1

Network ports SQL*Net - no default, see listener.ora file for a list of
listener objects you can use

Managing Server Components

2-10 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

These network ports must be unique in a multiversion environment because you
can have only one version of Oracle SQL/Services using the default network ports
for a dispatcher on a node. During a multiversion installation, you must specify
which alternate network ports you want the dispatcher to use. You need not make
any further changes to these network ports unless you want to create one
dispatcher listening exclusively on DECnet network ports and another dispatcher
listening exclusively on TCP/IP network ports, and so forth, because of the network
traffic. If clients are having problems connecting to dispatchers, use the SHOW
DISPATCHER command to monitor these network ports and to ensure each is
running.

See the ALTER DISPATCHER Command for more information about altering
dispatcher attributes.

If you alter a dynamic attribute of a running dispatcher online, then the change
takes effect immediately. However, if you alter a nondynamic attribute of a running
dispatcher online, then you must restart the dispatcher for the change to take effect.

If you alter a nondynamic attribute of a running dispatcher using the SQLSRV_
MANAGE utility, it displays an alternate success status indicating that you must
restart the dispatcher for the change to take effect. For example:

SQLSRV> ALTER DISPATCHER sqlsrv_disp MAX_CLIENT_BUFFER_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect

The SQLSRV_MANAGE utility displays the values of any altered nondynamic
attributes that will take effect when the dispatcher is restarted. For example:

** This Dispatcher will be updated as follows when it is restarted **
 Max client buffer size: 10000 bytes

If you alter a nondynamic attribute of a running dispatcher using the Oracle
SQL/Services Manager utility, it displays an alternate success status indicating that
you must restart the dispatcher for the change to take effect and inquires if you
want to restart the dispatcher immediately. The Oracle SQL/Services Manager
utility highlights the values of any altered nondynamic attributes that will take
effect when the dispatcher is restarted by displaying a flag-shaped icon next to each
attribute.

When you restart a dispatcher, all client network connections to the dispatcher are
disconnected. Therefore, you should schedule alterations to a dispatcher when few
or no clients will be using the network ports managed by that dispatcher.

Managing Server Components

Managing an Oracle SQL/Services System 2-11

Deleting a Dispatcher
To delete a dispatcher as an online operation, you must first shut it down (see the
SHUTDOWN DISPATCHER Command and the DROP Command). The only time
you want to delete a dispatcher is if it is no longer needed.

2.3.3 Managing a Service
Managing a service involves knowing how to create a service; how to start, stop,
and restart a service; and how to tailor the attributes of a service to suit the specific
requirements of your client/server configuration.

Creating a Service
The Oracle SQL/Services installation procedure and the SQLSRV_CREATE71.COM
command procedure creates and starts three services: a universal service named
GENERIC for use by Oracle SQL/Services clients, a database service named OCI_
SAMPLE for use by Oracle OCI clients, and an Oracle RMU service named RMU_
SERVICE for use by Oracle RMU clients.

As the server administrator, you may need to create other universal services for
different versions of Oracle Rdb. Similarly, you may want to create one or more
database services for specific Oracle Rdb databases on your system. When you
create a service, you must decide who will be authorized to access the service, how
many executors will be needed to support clients who will use the service, and so
forth. See Section 2.6 for more information about universal and database services.

Starting, Shutting Down, and Restarting a Service
Services that have the AUTOSTART attribute set to ON are automatically started
when you install Oracle SQL/Services and whenever a server is started. If
necessary, you can disable this action by starting a server with the START SERVER
AUTOSTART OFF command. Services are automatically shut down when the
system shuts down. Usually, you set the AUTOSTART attribute to ON for most
services you create so that they are available to clients all of the time.

However, you may decide to start certain services manually. For example, you may
create a transaction reusable service for a particular database to determine if you
can achieve better performance than using a session reusable service. In this
situation, you might choose to set the AUTOSTART attribute to OFF while you test
the new service. One reason to shut down a service is if you must prevent clients
from accessing the database provided by a service. For example, you would shut
down a service while you restored a database after encountering a disk failure.
Another reason you must shut down a service is if it failed to start. A failed service

Managing Server Components

2-12 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

is always left in a failed state and must be shut down. Once shut down, the reason
for failure, which can be due to an incorrectly specified argument value in its
definition, can be corrected using an ALTER SERVICE command, and then the
service can be started using the START SERVICE command. Generally, the only
time you will need to restart a service is if you alter a nondynamic attribute of a
service object, in which case you have to restart the service for the change to take
effect.

Altering a Service
After you create a service, you may need to tune the performance of your system by
adjusting the number of executors or the number of clients per executor for a
service. If new users are added to the network, you may need to authorize access to
a service to those users. If you upgrade a database to a higher version of Oracle
Rdb, you will need to alter a service to specify a new SQL version to be used by the
executors of the service. Table 2–3 lists all of the attributes of a service, their default
values, and indicates if an attribute can be modified dynamically. Following the
table is a brief description of the major service attributes.

Table 2–3 Default Settings for Service Object Attributes

Attribute Default Setting
Dynamic
Attribute

AUTOSTART ON

DEFAULT_CONNECT_USERNAME None Yes

REUSE_SCOPE SESSION

SQL_VERSION STANDARD

PROTOCOL SQLSERVICES

PROCESS_INITIALIZATION None

ATTACH None

OWNER None

SCHEMA None

SQL_INIT_FILE None

DATABASE_AUTHORIZATION CONNECT_USERNAME

APPLICATION_TRANSACTION_
USAGE

SERIAL Yes

IDLE_USER_TIMEOUT 0 Yes

IDLE_EXECUTOR_TIMEOUT 1800 Yes

MIN_EXECUTORS 0 Yes

Managing Server Components

Managing an Oracle SQL/Services System 2-13

Create as many service objects as you need to accommodate the databases accessed
by applications that your user community intends to run. See Section 2.6,
Section 2.7, Section 2.8, and Section 2.12 for more information.

Set the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_EXECUTOR_TIMEOUT
attributes for each service based on user activity over time to provide efficient
services to your clients. See Section 2.10 for more information.

You may need to adjust the CLIENTS_PER_EXECUTOR attribute value to attain the
best performance when tuning a transaction reusable service.

Giving users or identifiers access to services or modifying their current access is
another task you need to perform on a continual basis. Use the GRANT USE ON
SERVICE and REVOKE USE ON SERVICE commands to perform these tasks. Use
the SHOW SERVICE command to determine the users or identifiers who currently
have access to a particular service.

See the ALTER SERVICE Command for more information about altering service
attributes.

If you alter a dynamic attribute of a running service online, then the change takes
effect immediately. However, if you alter a nondynamic attribute of a running
service online, then you must restart the service for the change to take effect.

If you alter a nondynamic attribute of a running service using the SQLSRV_
MANAGE utility, it displays an alternate success status indicating that you must
restart the service for the change to take effect. For example:

SQLSRV> ALTER SERVICE payroll SQL_INIT_FILE PAYROLL_DIR:PAYROLL.SQLINIT;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect

The SQLSRV_MANAGE utility displays the values of any altered nondynamic
attributes that will take effect when the dispatcher is restarted. For example:

** This Service will be updated as follows when it is restarted **
 SQL init file: payroll_dir:payroll.sqlinit

MAX_EXECUTORS 1 Yes

CLIENTS_PER_EXECUTOR 1 Yes

Table 2–3 (Cont.) Default Settings for Service Object Attributes

Attribute Default Setting
Dynamic
Attribute

Setting Shared Memory Size

2-14 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

If you alter a nondynamic attribute of a running service using the Oracle
SQL/Services Manager utility, it displays an alternate success status indicating that
you must restart the service for the change to take effect and inquires if you want to
restart the service immediately. The Oracle SQL/Services Manager utility highlights
the values of any altered nondynamic attributes that will take effect when the
service is restarted by displaying a flag-shaped icon next to each attribute.

When you restart a service, all client network connections from applications using
the service are disconnected. Therefore, you should schedule alterations to a service
when few or no clients will be using the service.

Deleting a Service
The only time you may need to delete a universal service is when there are no more
databases for that specific version of Oracle Rdb in use. Similarly, you may want to
delete a database service if it is no longer used or if there are too few users using it
to justify this type of service. In either case, to delete the service online, you must
first shut it down (see the SHUTDOWN SERVICE Command and the DROP
Command).

2.4 Setting Shared Memory Size
You can set the size of shared memory that the server uses by specifying a value for
the MAX_SHARED_MEMORY_SIZE argument of the ALTER SERVER command.
By default, the server uses 2000 kilobytes (2 megabytes) of shared memory.

Setting the MAX_SHARED_MEMORY_SIZE argument is important for optimizing
the resource usage of the server system. The goal is to use the smallest amount of
shared memory possible to provide the required services. This section explains how
the Oracle SQL/Services server uses shared memory and how to set the MAX_
SHARED_MEMORY_SIZE argument for the best resource usage.

You can change the value for shared memory using the ALTER SERVER command.
However, this is not a dynamic attribute and requires that you restart the server. For
example:

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 4000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;
Disconnected from Server

Setting Shared Memory Size

Managing an Oracle SQL/Services System 2-15

The following are the two main costs associated with allocating shared memory:

■ Disk space for the system page file

You must ensure that you have sufficient system page file space available to
accommodate an increase in the size of shared memory. You must also ensure
that the GBLPAGFIL SYSGEN parameter is set high enough to accommodate an
increase in the size of shared memory.

■ Virtual memory for each component process of the server

Mapping shared memory makes each component process of the server use
more virtual memory, and thus consumes incremental operating system
resources.

Oracle SQL/Services manages shared memory in units of 65,536 bytes. Therefore,
the actual size of shared memory may be less than the MAX_SHARED_MEMORY_
SIZE attribute because the size is rounded down to the nearest even 65,536-byte
unit.

The server shared memory does not shrink or grow as the server runs. More or less
of it may be in use at a given time. When you issue a SHOW SERVER command in
the SQLSRV_MANAGE application for the server that you are connected to,
SQLSRV_MANAGE will show three values:

■ Total memory

This number is static for a given run of the server. You can alter the MAX_
SHARED_MEMORY_SIZE argument for a server, and it takes effect when you
issue a RESTART SERVER command. Total memory is the number of shared
memory units mapped by the server.

■ Free memory

This is the number of shared memory units that are completely unused by the
Oracle SQL/Services server.

■ Partly allocated memory

A shared memory unit may not be completely used in one piece. It is often
subdivided into smaller pieces. Shared memory units that are subdivided and
partly used are reported as partly allocated memory. It is currently not practical
to display the usage within the subdivided unit.

Free memory and partly allocated memory describe the shared memory units that
can still be allocated. By subtracting those units from the total units, you can
determine the shared memory units that are entirely used.

Setting Shared Memory Size

2-16 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

The minimum value for MAX_SHARED_MEMORY_SIZE is 132 KB. A minimum
value of 132 KB for the size of shared memory provides two shared memory units.
This is sufficient to start the monitor, connect to it from the SQLSRV_MANAGE
application, and run one or two executors serving one or two clients.

The maximum value for MAX_SHARED_MEMORY_SIZE is 2,000,000 KB. Lower
values should suffice for all applications.

In general, plan for the following shared memory usage:

■ For each executor and dispatcher that you plan to run, allow about 3 KB.

■ For each Oracle SQL/Services client connection that you plan to support, you
need to take into account the base shared memory usage for a client and add to
that the memory used for communication buffers.

The base shared memory usage is about 11 KB.

An Oracle SQL/Services application minimally consumes two communication
buffers. The default buffer size is 1.3 KB, so the minimum size for an Oracle
SQL/Services client is 15 KB (11 KB base + 4 KB for messages buffers).

If you use a 5 KB message buffer size, the minimum size is about 21 KB (11 KB
base + 2 * 5 KB for message buffers).

However, not all Oracle SQL/Services applications use only two buffers. When
a multi-tuple fetch or insert operation is initiated, you may get additional
buffers for the client. How many additional buffers you get is based on the
application. The dispatcher imposes a limit of 11 buffers that can be used at any
one time.

A strategy for determining optimal shared memory size is as follows:

1. Pick a generous size for your shared memory based on the rough sizing method
mentioned previously.

2. Run your system under normal load.

3. Occasionally issue a SHOW SERVER command from SQLSRV_MANAGE on
the server that you are managing. It will show you the memory usage.

4. Adjust your shared memory size:

– Downward, if you see a constant number of free memory units.

– Upward, if you see no free memory units. You may also see client
connections terminated by the server due to a lack of shared memory. This
is reported in the log files. In certain rare situations, the entire server can fail
due to insufficient shared memory.

Setting Up Dispatchers and Transport Selection

Managing an Oracle SQL/Services System 2-17

5. As you add new users and applications to the server, review the shared
memory usage.

2.5 Setting Up Dispatchers and Transport Selection
A client communicates with the server and dispatcher by using a network transport
supported on your system. The Oracle SQL/Services release 7.1 and higher server
supports the TCP/IP, DECnet, and NetWare (IPX/SPX) transports.

When you create a dispatcher object, you can specify whether you want the
dispatcher to support one or more transports. If you want a dispatcher to support
only one transport, you must create additional dispatchers to support each of the
transports that your Oracle SQL/Services clients use. For Oracle SQL/Services, you
can use one or more dispatchers for each server configuration. Each dispatcher
defined must be listening on one or more unique network port IDs or objects.

The following example illustrates how to create a dispatcher that supports the
SQL*Net transport:

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> CREATE DISPATCHER sqlnet_disp NETWORK_PORT SQLNET LISTENER_NAME ’LISTENER’;
SQLSRV> START DISPATCHER sqlnet_disp;

See the Guide to Using the Oracle SQL/Services Client API for more information on
using the SQL*Net transport.

The following example illustrates how to shut down and delete a dispatcher that
supports two transports, and create two other dispatchers, each supporting just a
single transport. First, ensure that no clients are using any transports supported by
the dispatcher that you plan to delete. Shutting down a dispatcher will disconnect
the network connections from any clients that are using the dispatcher. If no clients
are using the dispatcher, then shut down and delete the dispatcher. Finally, create
and start the new dispatchers.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CLIENTS;

Service: SQLSRV_MANAGE

 Connect Client Executor
 Username Node State PID

Setting Up Services and Types of Reuse

2-18 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Application
 root 127.0.0.1 RUNNING BOUND 00000ec3
SQLSRV_MANAGE
SQLSRV> SHUTDOWN DISPATCHER sqlsrv_disp;
SQLSRV> DROP DISPATCHER sqlsrv_disp;
SQLSRV> CREATE DISPATCHER sqlsrv_tcpip NETWORK_PORT TCPIP;
SQLSRV> CREATE DISPATCHER sqlsrv_decnet NETWORK_PORT DECNET;
SQLSRV> START DISPATCHER sqlsrv_tcpip;
SQLSRV> START DISPATCHER sqlsrv_decnet;

2.6 Setting Up Services and Types of Reuse
The Oracle SQL/Services server provides universal services and database services.

Universal Service
A universal service allows a client application to determine which database is to be
accessed. An executor process for a universal service, therefore, is not preattached
to a specific database. Each time a client application connects to a universal service,
it must issue one or more database attach statements before performing any data
access operations.

You can use universal services with Oracle Rdb to provide access to local and
remote Oracle Rdb databases.

Database Service
A database service allows a client application to access data within a specific
database. Therefore, an executor process for a database service is preattached to a
single database. When a client connects to a database service, it can immediately
begin to access data in the preattached database.

You can use database services with Oracle Rdb to provide access to local and remote
databases with the restriction that you must set the database authorization attribute
to the service owner to access remote databases (see Section 2.8.2 for more
information).

For Oracle Rdb V6.1 and higher for an executor process providing either type of
database service, the following SQL statements cannot be prepared within this
context:

■ ATTACH

■ DECLARE DATABASE

■ CREATE DATABASE

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-19

■ ALTER DATABASE

■ DROP DATABASE

■ CONNECT

■ SET CONNECT

■ DISCONNECT

Types of Reuse
The Oracle SQL/Services server provides services that have either a session reuse or
transaction reuse attribute.

Session Reuse An executor for a session reusable service processes requests for
one client session at a time. A session begins when a client connects to the service
using either an sqlsrv_associate call or an ODBC connect function and the
connection is bound to an executor process. A session ends when a client
disconnects from the service and the connection is unbound from the executor
process. A session reusable service is so named because an executor does not begin
to process a new session until the current session ends. The session reuse attribute
may be applied to either universal or database services. See Section 2.6.1 and
Section 2.6.2 for more information.

Transaction Reuse An executor for a transaction reusable service processes
requests for one transaction for a client at a time; however, the executor is shared by
many concurrent client sessions. A transaction begins when a client issues an SQL
statement that either implicitly or explicitly starts a transaction. A transaction ends
when the client issues a successful SQL COMMIT or ROLLBACK statement or
executes a stored procedure that commits or rolls back a transaction. A transaction
reusable service is so named because an executor does not begin to process a new
transaction until the current transaction ends. The transaction reuse attribute may
be applied only to database services. See Section 2.6.3 for more information.

In summary, the Oracle SQL/Services server provides the following three
fundamental types of service:

■ Session reusable universal service

Note: A client connected to a database service can access data
only from the preattached database; it cannot access data from any
other database.

Setting Up Services and Types of Reuse

2-20 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ Session reusable database service

■ Transaction reusable database service

Table 2–4 summarizes the attributes and settings associated with each service.

Section 2.6.1, Section 2.6.2, and Section 2.6.3 describe each type of service in more
detail.

2.6.1 Session Reusable Universal Services
An executor for a session reusable universal service processes requests for a single
client session at one time and is not preattached to a specific database.

You use a session reusable universal service when you want to allow client
applications to determine which database to use or if you have a node with a large
number of infrequently accessed databases for which it would be impractical to
provide individual database services. See Section 2.6.4 and Section 2.8 for more
information on deciding which types of service to provide.

Executor processes for session reusable universal services may be prestarted or
started on demand. By prestarting a sufficient number of executor processes for a
session reusable universal service, you enable clients to avoid the process startup
delay when they connect to the service. Clients will always incur the overhead of
attaching to the required database when using a session reusable universal service.

Figure 2–1 illustrates how a session reusable universal service works. When a client
connects to a session reusable universal service, the client connection is assigned

Table 2–4 Oracle SQL/Services Service Attributes

Service

Service Definition
Attribute

Session
Reusable
Universal

Session
Reusable
Database

Transaction
Reusable
Database

Prestarted Yes Yes Yes

Preattached No Yes Yes

Execute ATTACH statement by
using the Oracle SQL/Services
API or the Oracle ODBC Driver for
Rdb

Yes No No

Execute multiple attachments Yes No No

Number of clients per executor 1 1 >1

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-21

and bound to an executor process. Once bound, the client makes API calls to attach
to one or more databases, access data, and finally disconnect from any attached
databases. When the client releases the connection, the executor process unbinds
from the client connection. The executor process is then available for use by another
client.

Figure 2–1 Oracle SQL/Services Session Reusable Universal Services

2.6.2 Session Reusable Database Services
An executor for a session reusable database service processes requests for a single
client session at one time and is preattached to a single database.

You use a session reusable database service when you want to provide clients with a
service that accesses a specific database whose transactions are of long or unknown
duration. See Section 2.6.4 and Section 2.8 for more information on deciding which
types of service to provide.

Executor processes for session reusable database services may be prestarted or
started on demand. By prestarting a sufficient number of executor processes for a
session reusable database service, you enable clients to avoid process startup and
database attach delays when they connect to the service.

Figure 2–2 illustrates how a session reusable database service works. When a client
connects to a session reusable database service, the client connection is assigned and
bound to an executor process. Once bound, because the executor is preattached to a
database, the client can immediately make API calls to access data in the database.
When the client releases the connection, the executor process unbinds from the
client connection. The executor process is then available for use by another client.

Associate ReleaseAttach to
Database Associate ReleaseAttach to

Database

Time Session Session

Data
Access

Data
Access

Transactions*Transactions*

Client 1 Client 2

* can be single or multiple

Disconnect
Database

Disconnect
Database

Setting Up Services and Types of Reuse

2-22 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Figure 2–2 Oracle SQL/Services Session Reusable Database Services

2.6.3 Transaction Reusable Database Services
An executor for a transaction reusable database service is preattached to a single
database, processes requests for the transaction of one client at one time, and is
shared by many concurrent client sessions. Once assigned to a particular executor
process, a specific client connection remains assigned to that executor process until
the client application disconnects from the service.

You use a transaction reusable database service to provide clients with a service that
accesses a specific database where the database workload consists of transactions of
known, relatively short duration. When used in the appropriate situations,
transaction reusable database services can improve performance by reducing
system resource usage and database contention. This is because multiple clients
share a single executor process, thus reducing the total number of executor
processes required on the system.

Transaction reusable database services are not so well suited to situations where
transactions are of long or varying duration. If transaction reusable database
services are employed in such a situation, users will tend to experience
unpredictable response times because a client executing a long transaction will tie
up an executor process, making it unavailable for other users. See Section 2.6.4 and
Section 2.8 for more information on deciding which types of service to provide.

Executor processes for transaction reusable database services are always prestarted
so that the server can distribute client connections evenly across the set of executor
processes started for the service. Because multiple client connections share a single
transaction reusable executor process, you need not prestart as many executor

AssociateAttach to
Database

Time

Session Session

Data
Access

Associate ReleaseData
AccessRelease

Transactions* Transactions*

Client 1 Client 2

* can be single or multiple

Disconnect
Database

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-23

processes as when using session reusable executors. Fewer executor processes, with
a high number of clients per executor, are required when the workload consists of
very short transactions. More executor processes, with a lower number of clients per
executor, are required as the transaction duration increases.

Figure 2–3 illustrates how a transaction reusable database service works. When a
client connects to a transaction reusable database service, the client connection is
assigned to an executor process; however, the client connection does not stay bound
to the executor process after the executor has processed the initial connection.
Multiple client connections may be assigned to a single executor process. A client
connection is bound to an executor process when a transaction is started, at which
time the client makes API calls to access data in the database. When the client
program ends the transaction, by using an SQL COMMIT or ROLLBACK statement
or by executing a stored procedure that commits or rolls back a transaction, the
executor process unbinds from the client connection. The executor process then
becomes available for use by another client connection. When the client releases the
connection, the client connection is deassigned from the executor process.

Figure 2–3 Oracle SQL/Services Transaction Reusable Database Services

C1C1 C2C2

AssociateAttach to
Database

Access
Data Associate Release

Time

Access
Data

Access
Data ReleaseAccess

Data

Client 1 (C1) Client 2 (C2)

Transactions

Disconnect
Database

Setting Up Security on Servers

2-24 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.6.4 When to Use Session Reusable Versus Transaction Reusable Database
Services

 Table 2–5 summarizes the factors to consider in deciding whether to use session
reusable database services or transaction reusable database services.

2.7 Setting Up Security on Servers
Oracle SQL/Services, in combination with the underlying database engine,
provides various security mechanisms that you can employ to control the services
and data that users are allowed to access. An Oracle SQL/Services server
environment can be viewed as having three tiers where security is checked. The
tiers are as follows:

■ Tier 1: Client identification and authentication

The Oracle SQL/Services server first checks the identification and
authentication of users requesting access to the server. This occurs when the
client first connects to the server.

Table 2–5 When to Use Session Reusable Database Services Versus Transaction
Reusable Database Services

Database Service

Attribute Session Reusable Transaction Reusable

If client API requests are: Long duration
Unknown length

Short duration
Known length

If service use frequency is: Infrequent
 Set no. executors:
 Min=0
 Max=high value

Not applicable to use service
use frequency, set no.
executors:
 Min=Max (required)

Frequent
 Set no. executors:
 Min=Max

If number of clients per
executor is:

1 (required) >1
If short transactions, set to a
higher number.

If longer transactions, set to a
lower number.

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-25

■ Tier 2: Service access authorization

The Oracle SQL/Services server next checks that each user requesting access to
a particular service has been authorized to use that service.

■ Tier 3: Database and data access authorization

Finally, the underlying database engine checks each database access request
made by an executor process.

Each of these security tiers is discussed in the sections that follow.

2.7.1 Client Identification and Authentication
The first server security tier is client identification and authentication. This occurs
when the client application first connects to the server. The result of the successful
completion of the first tier is a connect user name that is used for authorization
checks in subsequent tiers.

Typically, a user will supply a user name and password when accessing a service.
When a client connects to an Oracle SQL/Services server, the server ensures that the
user’s account exists on the system and that the password is valid. Following
successful authentication, the client-supplied user name is used as the connect user
name. If the user name and password check fails or if the password has expired,
then the connection is rejected and an error message is returned to the client. If the
user does not supply a user name and password, the server then checks the
network transport of the connection.

If the client selected the DECnet transport, then the server checks to see if a proxy
exists for the node name or user name of the client or both. The server first looks up
the client’s DECnet node name and DECnet user name, if any, in the Oracle
SQL/Services proxy file, SYS$STARTUP:sqlsrv$proxy.dat. If a match is found, then
the local proxy user name is used as the connect user name. If no match is found,
but the client is on the same node as the server, then the user name of the client
process is used as the connect user name.

For the system management client only, the server uses the user name of the client
process as the connect user name, if the user:

■ Selected the TCP/IP transport

■ Logged in to the server node

■ Has SYSPRV or BYPASS privileges

As a system administrator, you can choose to allow access to a service without
requiring a user name and password by specifying a default connect user name. If

Setting Up Security on Servers

2-26 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

the user does not supply a user name and password and a default connect user
name is not specified (unknown users are not authorized to access the service), then
the connection is rejected and an error message is returned to the client. If the client
does not supply a user name and password and if a default connect user name has
been specified (unknown users are authorized to access the service), then the
connect user name is set to the default connect user name. If the client does supply a
user name, then the user name is used as the connect user name, regardless of
whether or not a default connect user name is specified.

When a system administrator connects to a system management service of a server,
the server performs the same user name and password check as when a client
connects to a service. If the user name and password checks fail, then the connection
is rejected and an error message is returned to the system management application.
You cannot specify a default connect user name for the system management service;
therefore, you cannot authorize unknown users to access the system management
service.

2.7.2 Service Access Authorization
The second server security tier verifies that the user is authorized to access the
selected service.

Each service has a list of user names and identifiers that are authorized to access the
service. When you create a new service, only the service owner, a privileged user
with the SYSPRV privilege, is authorized to access the service. As a system
administrator, you are responsible for granting appropriate users access to services
provided by the server. You can grant access to a service based on an individual
user name, an identifier, or you can grant access to a service to all users (for
example, GRANT USE ON SERVICE GENERIC TO PUBLIC).

When a user connects to a service, the server checks to see if the connect user name
or an identifier held by the connect user name has been authorized to use the
service, or if access to use the service has been granted to all users. If the user is not
authorized to access the service, then the connection is rejected and an error
message is returned to the client.

A system management service of a server also has a list of user names and
identifiers that are authorized to access the service and thus manage the server.
When you create a server, typically done as part of the installation, only the
privileged user with SYSPRV privilege is authorized to manage the server. As a
system administrator, you are responsible for granting access to any additional
users who will manage the server. If an unauthorized user attempts to connect to a

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-27

system management service of a server, then the connection is rejected and an error
message is returned to the system management application.

2.7.3 Database and Data Access Authorization
The third and final server security tier occurs at the database level in an executor
process. Whenever an executor process executes an SQL statement, the underlying
database engine performs a security check to determine if the user name executing
the request is authorized to do so. Oracle SQL/Services allows database requests to
be executed using either the connect user name or the service owner, depending on
the type of service you are providing and the version of Oracle Rdb specified for the
service. As a system administrator, you determine which user name is authorized
by the database engine by specifying the database access authorization attribute of
each service to be either the connect user name or service owner.

■ Database access authorization set to connect user name

If you set the database access authorization to connect user name, then the
underlying database uses the connect user name to determine if a client is
authorized to execute a database request. The connect user name is the
client-specified user name, a DECnet proxy user name, or the default connect
user name.

■ Database access authorization set to service owner

If you set the database access authorization to service owner, then the
underlying database uses the service owner’s user name to determine if a client
is authorized to execute a database request.

Table 2–6 illustrates that you can provide different combinations of service types to
clients with Oracle SQL/Services V6.1 and lower and Oracle SQL/Services V7.0
and higher.

Note: You cannot use database services with database access
authorization set to the connect user name to provide access to
remote Oracle Rdb databases. However, Oracle SQL/Services does
allow you to provide a database service for a remote Oracle Rdb
database if you create the service with database access
authorization set to the service owner.

Setting Up Security on Servers

2-28 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.7.4 How Server Security Tiers Work Together
Figure 2–4 illustrates how the three server security tiers work together for three
connect examples in which a client logs in to the system. Each example shows client
identification and authentication, service access authorization, and the resulting
database and data access authorization based on the service definition for each
service.

Table 2–6 Comparison of Service Combinations Between Previous Versions and
Version 7.0 and Higher

Oracle SQL/Services Version

Service
Type

Database Access
Authorization V6.1 and Lower V7.0 and Higher

Universal Connect user name Supported Supported

Universal Service owner Not supported Supported

Database Connect user name Not supported Supported1

1 Requires Oracle Rdb V6.1 or higher.

Database Service owner Supported Supported

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-29

Figure 2–4 Oracle SQL/Services Server Security

First Connect Example
In the first connect example, a user requests access to service X. The user specifies a
user name and a password, so these are authenticated by the server in the first
security tier and the connect user name is set to ’ned’. No default connect user name

Connect 1 Connect 2 Connect 3

Service

Client Connect

De f i n i t i on

to Server

Tier 3:

Tier 2:

Tier 1:

Service Access
Authorizat ion

Database and
Data Access
Authorizat ion

fication and
Authentication

Client Identi-

Service name=X
Owner=’fred’
Attach=’payroll_db’

User name=’ned’
Password=’pwned’

Service name=Y
Owner=’bert’
No attach argument

Grant use to PUBLIC

User name=’holly’
Password=’pwholly’

Grant use to ’freda’,
 ’ned’

User name =’holly’

Authenticated using

set to ’holly’

’holly’ authorized

using PUBLIC

using connect
user name ’holly’

’holly’

Database attached

User name=’ned’

Service name=Z

 password ’pwned’

Owner=’joe’
Attach=’account_db’

set to ’ned’

’ned’ authorized
access to service X
using ’ned’

 user name ’fred’

Default connect

set to ’jane’

’jane’ authorized

using ’jane’

 using service owner
 user name ’joe’

’jane’

No user name
No password

Grant use to ’janet’,
 ’jane’

Service name=X Service name=Y Service name=Z

Connect user name

Database attached Database attached

Data accessed using

 using service owner

access to service Y access to service Z

Data accessed using Data accessed using
connect user name

password ’pwholly’

service owner
No default connect

username argument

Database authorization=
connect username

username=’jane’

Database authorization= Database authorization=
connect username

Default connect

Connect user name Connect user name

Connect user nameConnect user nameConnect user name

connect user name
user name ’fred’
service owner

username=’jane’

No default connect
username argument

Authenticated using

Setting Up Security on Servers

2-30 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

is specified, so unknown users are not allowed to access service X; therefore, all
users requesting access to service X must supply a valid user name and a password.
In the second security tier, the server checks that the connect user name, ’ned’ in this
example, is authorized to access the service. Users ’freda’ and ’ned’, as well as a
privileged user with SYSPRV privilege, have been granted the right to use service X.
So user ’ned’ is authorized to access the service. Service X is a database service;
therefore, the executor process attaches to the ’payroll_db’ database by using the
service owner’s user name, ’fred’. Database access authorization for service X is set
to the service owner, so all database attaches and data access requests are also made
under the service owner’s user name, ’fred’ in this example.

Second Connect Example
In the second connect example, a user requests access to service Y. The user specifies
a user name and a password, so these are authenticated by the server in the first
security tier and the connect user name is set to ’holly’. No default connect user
name is specified, so unknown users are not allowed to access service Y; therefore,
all users requesting access to service Y must supply a valid user name and
password. In the second security tier, the server checks that the connect user name,
’holly’ in this example, is authorized to access the service. All users have been
granted the right to use service Y, so user ’holly’ is authorized to access the service.
Service Y is a universal service; therefore, an executor is not preattached to a specific
database. Database access authorization for service Y is set to the connect user
name, so all database attachments and data access requests are made under the
connect user name, ’holly’ in this example.

Third Connect Example
In the third connect example, a user requests access to service Z. The user does not
specify a user name and a password, so the server checks if unknown users are
authorized to access the requested service. A default connect user name is specified,
so unknown users are allowed to access service Z as user ’jane’; therefore, the
connect user name is set to ’jane’. In the second security tier, the server checks that
the connect user name, ’jane’ in this example, is authorized to access the service.
Users ’janet’ and ’jane’, as well as a privileged user with SYSPRV privilege have
been granted the right to use service Z, so user ’jane’ is authorized to access the
service. Service Z is a database service; therefore, the executor process attaches to
the ’account_db’ database by using the service owner’s user name, ’joe’. However,
database access authorization for service Z is set to the connect user name, so all
data access requests are made under the connect user name, ’jane’ in this example.

Deciding Which Types of Service to Provide to Clients

Managing an Oracle SQL/Services System 2-31

2.8 Deciding Which Types of Service to Provide to Clients
The guidelines in Section 2.8.1 to Section 2.8.5 can help you to decide the attributes
of the services you provide to clients.

2.8.1 Which Services to Provide?
The following guidelines can help you to decide whether to provide clients with a
universal service or a database service.

Provide One or More Universal Services If:
■ Your system has a large number of databases that are accessed infrequently and

where creating a database service for each database would be unmanageable.

■ You have legacy applications or third-party applications that are able to select
the database to be used only by connecting to a universal service and executing
an SQL ATTACH statement.

■ You are providing an application development environment where application
developers need full control over the databases they are using.

■ You need to provide access to remote Oracle Rdb databases when database
authorization is by connect user name.

Provide Database Services If:
■ Your system has a number of frequently accessed databases that can be

managed easily by using database services.

■ You want to provide fast client connection times using prestarted executor
processes that are preattached to the appropriate database.

■ You have one or more databases with suitable transaction workload
characteristics that can take advantage of the performance gains made possible
with transaction reusable database services.

Note: You cannot use database services with database access
authorization set to the connect user name to provide access to
remote Oracle Rdb databases. However, Oracle SQL/Services does
allow you to provide a database service for a remote Oracle Rdb
database if you create the service with database access
authorization set to the service owner.

Deciding Which Types of Service to Provide to Clients

2-32 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.8.2 Setting Database Access Authorization?
The following guidelines can help you understand and decide what type of service
to provide to clients and whether or not to set database access authorization to the
connect user name or the service owner.

Universal Services

Database Access Authorization Set to Connect User Name For clients using a
universal service, set database access authorization to the connect user name if you
want client applications to attach to and access databases by using the
client-supplied user name, the DECnet proxy user name, or the default connect user
name. With database access authorization set to the connect user name, client access
to databases is based on the use granted to individual users or groups of users
using the underlying database security mechanisms.

Example 2–1 illustrates how to create the universal service named GENERIC. Note
that GENERIC is the service name that an Oracle SQL/Services or Oracle ODBC
Driver for Rdb client will use by default if no service name is supplied. This
universal service has database access authorization set to the connect user name,
access granted to all users, a minimum of 1 executor process, and a maximum of 20
executor processes.

Example 2–1 Default Universal Service with Database Access Authorization Set to
Connect User Name

SQLSRV> CREATE SERVICE GENERIC
_SQLSRV> OWNER ’SQLSRV$DEFLT’
_SQLSRV> DATABASE_AUTHORIZATION CONNECT USERNAME
_SQLSRV> MIN_EXECUTORS 1
_SQLSRV> MAX_EXECUTORS 20;
SQLSRV> GRANT USE ON SERVICE GENERIC TO PUBLIC;
SQLSRV> START SERVICE GENERIC;

Database Access Authorization Set to Service Owner For clients using a
universal service, set database access authorization to the service owner only if you
need client applications to attach to and access databases by using a single, fixed
user name, the service owner user name. Use this approach if you have one or more
databases that must be accessed under a fixed user name using a universal service.
You can use the GRANT USE ON SERVICE command to restrict the users that can
access such a service.

Deciding Which Types of Service to Provide to Clients

Managing an Oracle SQL/Services System 2-33

Usually, you will not set database authorization to service owner for a universal
service.

Example 2–2 illustrates how to create a universal service that might be used for
testing purposes that has database access authorization set to the service owner.
Authorization to use the service is granted to only two development accounts in
addition to the service owner user name account.

Example 2–2 Universal Service with Database Access Authorization Set to Service
Owner

SQLSRV> CREATE SERVICE GEN_DEVEL OWNER ’noprivs’
_SQLSRV> DATABASE_AUTHORIZATION SERVICE OWNER
_SQLSRV> MIN_EXECUTORS 0
_SQLSRV> MAX_EXECUTORS 5;
SQLSRV> GRANT USE ON SERVICE GEN_DEVEL TO ’develop’, ’test’;
SQLSRV> START SERVICE GEN_DEVEL;

Database Services

Database Access Authorization Set to Connect User Name For clients using a
database service, set database access authorization to the connect user name if you
want clients to access the database by using the client-supplied user name, the
DECnet proxy user name, or the default connect user name. With database access
authorization set to the connect user name, client access to the database is based on
the use granted to individual users or groups of users using the underlying
database security mechanisms.

Example 2–3 illustrates how to create a database service to access the policies and
procedures database of a company where the database is accessed under the client's
user name. Access to the service is granted to all users, while access to data in the
database is based on the underlying database security mechanisms. Unknown users
are authorized to use the service under the default connect user name 'readpp',
which has read-only access to data in the database. The service is owned by the

Caution: If you set database access authorization to the service
owner for a universal service, be sure that the service owner user
name does not have access to any databases containing secure or
sensitive data that would otherwise be protected against access
from unauthorized users.

Deciding Which Types of Service to Provide to Clients

2-34 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

’ppdb’ account, which will be used to attach to the database when an executor
process is started.

Example 2–3 Session Reusable Database Service with Database Access
Authorization Set to Connect User Name

SQLSRV> CREATE SERVICE P_AND_P
_SQLSRV> ATTACH ’FILENAME pp_disk:[pp]pp_database’
_SQLSRV> OWNER ppdb
_SQLSRV> DATABASE_AUTHORIZATION CONNECT USERNAME
_SQLSRV> DEFAULT_CONNECT_USERNAME readpp
_SQLSRV> MIN_EXECUTORS 0
_SQLSRV> MAX_EXECUTORS 10;
SQLSRV> GRANT USE ON SERVICE P_AND_P TO PUBLIC;
SQLSRV> START SERVICE P_AND_P;

Database Access Authorization Set to Service Owner For clients using a database
service, set database access authorization to service owner if you want client
applications to access the database by using the service owner user name. Use this
approach when you want to grant access to specific data within the database and to
specific database operations to a single user name by using the underlying database
security mechanisms, and then grant use of the service to a restricted set of user
names by using the GRANT USE ON SERVICE command.

Example 2–4 illustrates how to create a database service to access the order-entry
database of a company where the database is accessed under the service owner user
name, 'ordent'.

Access to the service is granted only to the 'ordent1', 'ordent2', 'ordent3', and
'ordmgr' users, in addition to the service owner and privileged users with SYSPRV
privilege. The database name, 'oe_database', is defined as a logical name OE_
DISK:[OE]OE_DATABASE, so the database can be physically moved if necessary
without having to modify the service definition.

The transaction workload characteristics of the database allow the service to be
transaction reusable, support up to 100 users distributed over 5 executor processes,
and have up to 20 users per process.

Example 2–4 Transaction Reusable Database Service with Database Access
Authorization Set to Service Owner

SQLSRV> CREATE SERVICE ORD_ENT REUSE SCOPE IS TRANSACTION
_SQLSRV> ATTACH ’FILENAME OE_DATABASE’
_SQLSRV> OWNER ordent

Deciding Which Types of Service to Provide to Clients

Managing an Oracle SQL/Services System 2-35

_SQLSRV> DATABASE_AUTHORIZATION SERVICE OWNER
_SQLSRV> MIN_EXECUTORS 5
_SQLSRV> MAX_EXECUTORS 5
_SQLSRV> CLIENTS_PER_EXECUTOR 20;
SQLSRV> GRANT USE ON SERVICE ORD_ENT TO ordent1,
_SQLSRV> ordent2,
_SQLSRV> ordent3,
_SQLSRV> ordmgr;
SQLSRV> START SERVICE ORD_ENT;

2.8.3 Specify a Default Connect User Name?
The following guidelines can help you decide whether or not to specify the default
connect user name to authorize unknown users’ access to databases on your system
through either a universal service or a database service.

Using Universal Services
Specify a default connect user name for a universal service only if you need to allow
unknown users access to databases on your system. You may choose this approach
in a development environment to allow simple access to databases used for testing
and debugging.

Usually, you will not specify a default connect user name to authorize use of a
universal service to unknown users.

Using Database Services
Specify a default connect user name to authorize use of a database service to
unknown users if you want to allow access to data in a particular database without
requiring a user name and password. For example, you may consider providing
access to nonsensitive, public-access data in a database by using this mechanism in
combination with database access authorization set to the connect user name (see
Example 2–3).

Caution: If you specify a default connect user name to authorize
use of a universal service to unknown users, ensure that any
databases containing secure or sensitive data are protected with the
appropriate access restrictions at the database level.

Deciding Which Types of Service to Provide to Clients

2-36 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.8.4 Grant or Restrict Access to a Service?
The following guidelines can help you decide whether to grant access to a service to
all users or restrict access to a service to a specified list of users.

Grant Access to a Service to All Users If:
■ You have universal or database services where database access authorization is

set to the connect user name and you want to provide all users with the most
flexible method of access to data in databases on your system, subject to
underlying database security in individual databases.

■ You have a database service where database access authorization is set to the
service owner, but access to the database by using the service owner user name
is restricted to nonsensitive, public-access data that you want to make available
to all users.

Restrict Access to a Service to a Specified List of Users If:
■ You have a universal service with database access authorization set to the

service owner in order to access a set of databases using a fixed user name.

■ You have a database service with database access authorization set to the
service owner where you want to grant access to data in a database to a single
user name by using the underlying database security mechanisms, and then
control access to that data by using Oracle SQL/Services security mechanisms.

2.8.5 Provide Arbitrary or Predefined Access to Data?
The following guidelines can help you decide whether to provide arbitrary access to
data or predefined access to data.

Arbitrary Access to Data
You restrict the tables that users can access and the operations that they can perform
on those tables by using either underlying database security mechanisms alone or

Caution: Restricting access to services to a specified list of user
names by using Oracle SQL/Services does not prevent other users
from trying to log in to your system and attempting to access the
same databases (using a tool such as interactive SQL) provided by
those services. Even if you restrict access to a service to a specified
list of user names, you should still protect secure and sensitive data
in databases by using underlying database security mechanisms.

Considering Security for Selecting the Service Owner User Name

Managing an Oracle SQL/Services System 2-37

in combination with Oracle SQL/Services security mechanisms. However, once
access to data has been granted, users can then execute arbitrary SQL statements
against that data, subject to the access they have been granted. For example, if users
have INSERT access to a table, they can insert any data they wish into that table. In
some situations, allowing arbitrary access to data in a database may not be
desirable.

Predefined Access to Data
In some situations, it is desirable to restrict users’ ability to manipulate data to a set
of predefined operations. You do this by creating a set of definer’s rights stored
procedures that provide all of the necessary access to data in one or more tables. By
restricting access to the tables to the stored procedures’ definer’s user name, you
prevent access from all other users. You then grant access to the stored procedures
by using either underlying database security mechanisms alone or in combination
with Oracle SQL/Services security mechanisms.

2.9 Considering Security for Selecting the Service Owner User Name
The security criteria that you use to select and configure an account for use as a
service owner account is based on the platform on which the server is running, the
type of services you are providing, and the database authorization attribute of the
services.

2.9.1 Execution Environment for Database Requests
The following guidelines can help you select and configure an account for use as a
service owner account on OpenVMS systems based on the service type and the
database authorization attribute of the service.

Universal Services

Database Access Authorization Set to Connect User Name For a universal
service with database authorization set to connect user name, you should select an
account with a nonsystem user identification code (UIC) that has minimal
privileges. The Oracle SQL/Services installation procedure creates a nonprivileged
account named SQLSRV$DEFLT that may be used for all universal services with
database authorization set to connect user name.

Database Access Authorization Set to Service Owner For a universal service with
database authorization set to service owner, you should select an account with a

Considering Security for Selecting the Service Owner User Name

2-38 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

nonsystem UIC that has minimal privileges and that has been granted the necessary
database access to only those databases that are designed to be accessed by the
service. To ensure the security and integrity of your data, the account you select will
usually be severely restricted in the access it has to databases on your system and
the data contained therein.

Database Services

Database Access Authorization Set to Connect User Name For a database service
with database authorization set to connect user name, you should select an account
with a nonsystem UIC that has minimal privileges. Because all database requests
are executed using the connect user name, the account you select as the service
owner user name need only be granted the right to attach to the database. For
example, by granting to the SQLSRV$DEFLT account the right only to attach to the
database, you can use the nonprivileged account created by the Oracle
SQL/Services installation procedure.

Database Access Authorization Set to Service Owner For a database service with
database authorization set to service owner, you should select an account with a
nonsystem UIC that has minimal privileges and that has been granted the right to
access certain specific data within the database and that has been granted the right
to execute certain specific operations against that data. The amount of access you
grant to the service owner account will be specific to each database for which you
provide a database service with database authorization set to service owner.

You must configure each service owner account with minimum settings for the
following process quotas shown in Table 2–7 to ensure that an executor process can
successfully attach to a database and execute requests against that database. If you
do not configure a service owner account with sufficient values for these quotas,
then database requests may fail with a variety of errors based on the particular
quota the executor exhausts. The minimum values suggested in Table 2–7 should be
sufficient for most applications; however, complex applications may require higher
values.

Table 2–7 Suggested Minimum Process Quota Values for the Service Owner Account

Name Description Suggested Minimum Setting

FILLM File limit 50

BIOLM Buffered I/O limit 60

DIOLM Direct I/O limit 60

ASTLM AST limit 250

Considering Security for Selecting the Service Owner User Name

Managing an Oracle SQL/Services System 2-39

You should configure each service owner account with appropriate values for the
following process quotas shown in Table 2–8. Although an executor process will
function correctly unless these quotas are considerably underconfigured, you may
be able to improve the performance of your system by increasing the values of these
quotas.

See the Oracle Rdb Installation and Configuration Guide, Release 7.1 for more
information on Oracle Rdb requirements.

2.9.2 Execution Environment for External Functions and Procedures
You can define external functions and procedures to execute within the context of
the executor process or in an independent server process that Oracle Rdb creates
specifically to execute external functions and procedures.

To define an external function or procedure to execute within the context of the
executor process, use the SQL BIND ON CLIENT SITE syntax. From the perspective
of the Oracle Rdb database engine, the database client is the Oracle SQL/Services
executor process, not the Oracle SQL/Services client. To define an external function
or procedure to execute in an independent server process, use the SQL BIND ON
SERVER SITE syntax.

See Section 2.8 for a complete, in-depth discussion of how Oracle SQL/Services
implements the database access authorization models. See the Oracle Rdb7 SQL

TQELM Timer queue entry limit 255

ENQLM Enqueue limit 18000

BYTLM Nonpaged pool limit 50000

PGFLQUO Page file quota 40000

Table 2–8 Suggested Minimum Process Quota Values for Working Set Parameters
for the Service Owner Account

Name Description Suggested Minimum Setting

WSDEF Working set default 2048

WSQUO Working set quota 3072

WSEXTENT Working set extent 4096

Table 2–7 (Cont.) Suggested Minimum Process Quota Values for the Service Owner

Name Description Suggested Minimum Setting

Considering Security for Selecting the Service Owner User Name

2-40 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Reference Manual and the Oracle Rdb7 Guide to SQL Programming for more
information on defining external functions and procedures.

2.9.2.1 External Functions and Procedures Executing in the Context of the
Executor Process
Because you can define external functions and procedures to execute within the
context of the executor process, you should consider this when you configure
service owner accounts.

Universal Services

Database Access Authorization Set to Connect User Name External functions
and procedures defined to execute in the context of the executor process always
execute with the rights and privileges of the connect user name using this type of
service.

Database Access Authorization Set to Service Owner External functions and
procedures defined to execute in the context of the executor process always execute
with the rights and privileges of the service owner user name under this type of
service.

Database Services

Database Access Authorization Set to Connect User Name External functions
and procedures defined to execute in the context of the executor process always
execute with the rights and privileges of the service owner user name under this type
of service. This is because Oracle SQL/Services cannot reconfigure an executor
process once it has attached to the database. To have external functions and
procedures execute with the rights and privileges of the connect user name, you
must define the external functions and procedures to execute in an independent
server process using the SQL BIND ON SERVER SITE syntax.

Database Access Authorization Set to Service Owner External functions and
procedures defined to execute in the context of the executor process always execute
with the rights and privileges of the service owner user name under this type of
service.

Setting the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_EXECUTOR_TIMEOUT Attributes

Managing an Oracle SQL/Services System 2-41

2.9.2.2 External Functions and Procedures Executing in the Context of an
Independent Process
You can define external functions and procedures to execute within the context of
an independent server process. With this model, the execution environment for
external functions and procedures is based on the database authorization attribute
regardless of whether you are using universal or database services.

Universal and Database Services

Database Access Authorization Set to Connect User Name
External functions and procedures defined to execute in the context of an
independent server process always execute with the rights and privileges of the
connect user name with this type of authorization.

Database Access Authorization Set to Service Owner
External functions and procedures defined to execute in the context of independent
server process always execute with the rights and privileges of the service owner
user name with this type of authorization.

2.10 Setting the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_
EXECUTOR_TIMEOUT Attributes

The use of some services on your system may be fairly constant over time, whereas
the use of other services may vary over time with peaks and lulls in the user
activity. By setting appropriate values for the MIN_EXECUTORS, MAX_
EXECUTORS, and IDLE_EXECUTOR_TIMEOUT attributes for a service, you can
provide an efficient service to your clients.

You must always set the MIN_EXECUTORS attribute to the same value as the
MAX_EXECUTORS attribute for a transaction reusable service. This is to allow
Oracle SQL/Services to distribute new client connections evenly over the pool of
available executor processes for a service.

2.10.1 Configuring a Fixed Number of Executors for a Service
For a service that has a fairly constant number of users connected to it over time,
usually you will set the MIN_EXECUTORS attribute to the same value as the MAX_
EXECUTORS attribute. This ensures that a constant number of executors are
prestarted and are always available to client applications. This avoids the delay
while an executor process is started for a new client connection.

Setting the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_EXECUTOR_TIMEOUT Attributes

2-42 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

2.10.2 Configuring a Variable Number of Executors for a Service
For a service where the number of connected users varies over time, with more
users at peak times and fewer users at less busy times, you can choose to adjust the
number of executors to suit any load. To do this, you can choose to have the Oracle
SQL/Services server automatically start new executor processes as they are needed,
or you can prestart new executor processes in anticipation of increased demand at
peak times.

2.10.2.1 Starting New Executor Processes as They Are Needed
The simple approach to handling peaks and lulls in the demand for a service is to
set the MIN_EXECUTORS attribute to a value that supports the activity for the
service at normal times, set the MAX_EXECUTORS attribute to a value that
supports the activity for the service at peak times, then let Oracle SQL/Services
create new executor processes as demand increases during peak periods of use. By
choosing a suitable value for the IDLE_EXECUTOR_TIMEOUT attribute, you can
ensure that executors remain active once they have been started, even if demand
might decrease for a little while. Although this approach is very easy to configure
and manage, a disadvantage with this approach is that new users who connect to
the service at the beginning of a peak period will encounter a slight delay if new
executor processes must be created.

2.10.2.2 Prestarting New Executor Processes Ahead of Increased Demand
A more complex approach to handling peaks and lulls in the demand for a service
is to set the MAX_EXECUTORS attribute to a value that supports the activity for the
service at peak times, then create SQLSRV_MANAGE scripts that can be used to
increase the value of the MAX_EXECUTORS attribute for the service at peak times
and decrease the value of the MAX_EXECUTORS attribute for the service at a time
when demand for the service starts to decrease.

You can automatically invoke the SQLSRV_MANAGE scripts to increase the MAX_
EXECUTORS attribute value in anticipation of the increase in the number of users
of a service and decrease the MAX_EXECUTORS attribute value at the end of a
peak period by writing command procedures for batch jobs. The advantage of this
approach of prestarting executors ahead of demand is that new users who connect
to the service at the beginning of a peak period will not encounter delays as
executor processes are created. A disadvantage of this approach is that it is more
complex to manage.

Understanding Database Access Authorization Models

Managing an Oracle SQL/Services System 2-43

2.11 Using an SQL Initialization File
You can use the SQL_INIT_FILE argument of the CREATE SERVICE or ALTER
SERVICE command to specify a file containing SQL statements that tailor the SQL
environment for a client connection. For example, you can set the SQL dialect and
default character set by using an SQL initialization file. The statements in an SQL
initialization file are executed every time a client connects to a service.

See Section 4.1 for more information about syntax conventions used in an SQL
initialization file.

2.12 Understanding Database Access Authorization Models
In Section 2.7, Section 2.8, and Section 2.9, you learned that Oracle SQL/Services
allows you to authorize database access using the service owner user name or the
connect user name. You also learned how these models affect the environment
within which database requests and external functions are executed. This section
describes in detail how Oracle SQL/Services implements database authorization by
connect user and by service owner.

2.12.1 Accessing an Oracle Rdb Database
To understand how Oracle SQL/Services implements database authorization by
connect user name and by service owner, it is first necessary to understand that four
user names are involved in accessing an Oracle Rdb database in the Oracle
SQL/Services environment:

■ Operating system process user name

■ Oracle Rdb system user name

■ Oracle Rdb session user name

■ Oracle Rdb current user name

Following is an explanation of the four user names.

2.12.1.1 Operating System Process User Name
The process user name is the user name under which an Oracle SQL/Services
executor process runs a local attach, or the user name of the Oracle Rdb remote
server process in a remote attach.

The process user name is set based on the SERVICE OWNER service attribute for
local attaches, whereas it is based on the ATTACH statement and the configuration

Understanding Database Access Authorization Models

2-44 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

of the remote Oracle Rdb server node for remote attaches. Associated with the
process user name are a number of process attributes. These attributes include:

■ UIC

■ Privileges

■ Rights list

■ Account name

■ Default directory

■ Logical names, including

– SYS$DISK

– SYS$LOGIN_DEVICE

– SYS$LOGIN

– SYS$SCRATCH

– LNM$GROUP (for group logical name table)

2.12.1.2 Oracle Rdb System User Name
Each attached database in an executor process has a value for the system user name.
The Oracle Rdb system user name is used to determine if the process is authorized
to attach to the database and also serves as the default value for the Oracle Rdb
session user name.

The Oracle Rdb system user name for an attached database defaults to the process
user name but may be overridden by the SQL ATTACH statement attribute of a
database service or by a client application accessing a universal service, depending
on the type of service being provided, the attributes of that service, and the version
of Oracle Rdb being used.

The Oracle Rdb system user name for an attached database is established at the
time of attachment to the database and remains fixed for the life of the attachment.
You can override the default value for the system user name when using Oracle
Rdb V6.1 or higher by specifying a user name and a password in the attach-string
argument of an SQL ATTACH statement or in the connect-string argument of an
SQL CONNECT statement. See the Oracle Rdb7 SQL Reference Manual for more
information on the SQL ATTACH and CONNECT statements.

The number of attached databases in an executor process providing a universal
service is determined by the client application. Different attached databases may
have different system user names.

Understanding Database Access Authorization Models

Managing an Oracle SQL/Services System 2-45

An executor process providing a database service has only one attached database.

2.12.1.3 Oracle Rdb Session User Name
All database requests are executed within the context of an SQL connect. Each SQL
connect in an executor process has a value for the session user name. The session
user name for an SQL connect defaults to the Oracle Rdb system user name, but
may be overridden by Oracle SQL/Services or by a client application, depending on
the type of service being provided, the attributes of that service, and the version of
Oracle Rdb being used.

The session user name for an SQL connect is determined at the time the SQL
connect is established and remains fixed for the life of the SQL connect. You can
override the default value for the session user name when using a universal service
with Oracle Rdb V6.1 or higher by specifying a user name and a password as
arguments to the SQL CONNECT statement. See the Oracle Rdb7 SQL Reference
Manual for more information on the SQL CONNECT statement.

The number of SQL connects in an executor process providing a universal service is
determined by the client application. Different SQL connects may have different
session user names. An SQL connect in an executor process providing a universal
service can reference one or more than one database attach.

The number of SQL connects in an executor process providing a database service is
determined by the version of Oracle Rdb in use and the service reuse attribute. See
Section 2.6 for information on reuse attributes.

The ATTACH statement of a database service is always executed in the context of
the default SQL connect. You cannot use an SQL CONNECT statement to attach to a
database using a database service. The session user name for the default connect
defaults to the system user name. If an SQL initialization file is specified for the
service, then the statements contained therein are executed in the context of the
default SQL connect after the SQL ATTACH statement.

For Oracle Rdb V6.1 and higher, a new SQL connect is created for each client
application that connects to the service. If the service is defined with database
authorization by the service owner, then the session user name for each SQL
connect of a client application defaults to the system user name. If the service is
defined with database authorization by connect user, then each SQL connect of a
client application is created using the connect user name for each individual client
connection. When a client application disconnects from the service, the SQL connect
of the client application is deleted. For a session reusable database service, there is a
maximum of one client application SQL connect per executor. For a transaction

Understanding Database Access Authorization Models

2-46 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

reusable database service, there is one client application SQL connect for each
concurrent client connection.

2.12.1.4 Oracle Rdb Current User Name
The current user name is always set to the value of the session user name except
during the execution of a definer’s rights stored procedure, in which case, the
current user name is set to the definer’s user name.

Whenever a database request is started, Oracle Rdb must determine if the process
issuing the request is authorized to execute the request. To perform this check,
Oracle Rdb first merges the system privileges of the process accessing the database
with the database privileges of the current user name. For a local attach, the process
accessing the database is the Oracle SQL/Services executor process. For a remote
attach, the process accessing the database is the Oracle Rdb server process.

The process privilege mask of the operating system is used as the system privileges
for the executor process.

After Oracle Rdb merges the privileges, it then determines if the combination of
these privileges is sufficient to execute the request. Because Oracle Rdb combines
the privileges in this way, you must carefully choose the service owner user name
for a database service. See Section 2.9 for more information.

For example, consider a database service called PAYROLL that is defined with a
service owner user name of SYSTEM and with database authorization set to the
connect user name. User SMITH might not normally be authorized to update a table
called EMPLOYEE_PAY in the payroll database. However, if user SMITH accesses
the payroll database using the PAYROLL service, the database privileges for user
name SMITH, when combined with the system privileges for the SYSTEM user
name, which include SYSPRV and BYPASS, allow this user full access to the
EMPLOYEE_PAY table and all other tables in the database.

2.12.2 Setting the Process User Name and the Oracle Rdb System User Name
To set the Oracle Rdb system user name, Oracle SQL/Services uses a process user
name impersonation mechanism to set the process user name and all associated
process attributes of an executor process. By setting the process user name, Oracle
SQL/Services automatically establishes the correct default for the Oracle Rdb
system user name. Furthermore, by setting the process user name, Oracle
SQL/Services also establishes the correct environment for the consistent execution
of external functions and procedures that execute within the context of the executor
process.

Understanding Database Access Authorization Models

Managing an Oracle SQL/Services System 2-47

Oracle SQL/Services sets the process user name at different times, based on the
type of service you provide:

■ Universal service

Oracle SQL/Services sets the process user name every time a new client connect
is assigned to an executor process for a universal service. This ensures the
correct environment at all times for the execution of external functions and
procedures that execute within the context of the executor process.

■ Database service

Oracle SQL/Services sets the process user name once for an executor process
for a database service at the time the executor process is first started. However,
to ensure the correct and successful execution of database requests once an
executor is attached to a database, Oracle SQL/Services cannot and does not
reset the process user name when a new client connect is assigned to an
executor process. This behavior provides a consistent environment for the
execution of external functions and procedures that execute within the context
of the executor process. However, it means that all such functions and
procedures are executed under the service owner user name, rather than the
connect user name for a service with the database authorization attribute set to
connect user. See Section 2.9.2 for more information on using external functions
and procedures with Oracle SQL/Services, including information on how to
define external functions and procedures to execute within the context of an
independent server process with the rights and privileges of the connect user
name.

When Oracle SQL/Services creates an executor process, the Oracle SQL/Services
monitor process merges the authorized and default privileges of the service owner
account. The combination of these privileges becomes the authorized privilege mask
of the executor process. When Oracle SQL/Services resets the process user name of
an executor process, it sets the process privilege mask and current privilege mask of the
executor process. To set the process privilege and current privilege masks of an
executor process, Oracle SQL/Services merges the authorized and default privileges
of the new process user name. However, Oracle SQL/Services cannot set the
authorized privilege mask of an executor process. Therefore, you must ensure that a
service owner account does not have excess authorized or default privileges.
Typically, you will grant only the TMPMBX and NETMBX privileges to a service
owner account.

Understanding Database Access Authorization Models

2-48 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Maintaining an Oracle SQL/Services Server 3-1

3
Maintaining an Oracle SQL/Services Server

After you set up Oracle SQL/Services and configure one or more servers, you
should periodically perform maintenance tasks, which include:

■ Relocating log, dump, and lock files (optional)

■ Monitoring server activity

■ Monitoring client connections

■ Recovering from failures

■ Isolating problems

■ Solving server errors

■ Submitting software problem reports

Each of these topics is described in the sections that follow.

3.1 Monitoring Server Activity
Monitoring server activity consists in part of using the SHOW commands to show
the operational state of objects. For example, for service and dispatcher objects, a
SHOW command will inform you if the object is running. If you find that a service
or dispatcher object is not running and should be running, then it probably failed
and you should check the log and dump files to determine why the object stopped
running. After resolving the problem, issue either a START SERVICE or START
DISPATCHER command and specify the service or dispatcher name of the object
you want to start up. Perform another SHOW command to confirm that the service
or dispatcher object is running.

Using the SHOW SERVICES command, you can also monitor client activity during
peak load periods for all services provided on that server. For example, if the

Monitoring Client Connections

3-2 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

number of active clients approaches the maximum number allowed, you should
consider increasing the maximum number of clients allowed to reduce the chances
of client connection failures. You can dynamically increase the MAX_EXECUTORS
value for a particular service by using the ALTER SERVICE command.

3.2 Monitoring Client Connections
You can use the SHOW CLIENTS command to show the state of clients as each
connects to a service, submits requests, and releases the connection. The occurrence,
sequence, and duration of connection states are different for each type of service.
The client state can help you determine what each connection is doing and if
connections are being serviced normally. However, the connection state information
by itself may not be sufficient for troubleshooting all problems. For more
information on troubleshooting problems, see Section 3.4.2.

Section 3.2.1 and Section 3.2.2 describe the states that a client connection can
display, the sequences that can occur, and the relative duration of each state when
serviced by either a session reusable service or a transaction reusable database
service.

3.2.1 Client Connection States for Session Reusable Services
Figure 3–1 shows the three possible connection states that a SHOW CLIENTS
command can display for a client connection when serviced by an executor process
for a session reusable service relative to client and executor events. Of these three
states, the Running Binding and Running Bound states are of most interest.

Monitoring Client Connections

Maintaining an Oracle SQL/Services Server 3-3

Figure 3–1 Client Connection States for Session Reusable Services

The connection from a client attempting to connect to a session reusable service is in
a Running Binding state while it waits for an executor to accept the connection. A
connection is in the Running Binding state only momentarily if a free executor
process is available to accept the connection. However, a connection remains in the
Running Binding state for a longer period of time if a new executor process must be
created for the connection, which may take several seconds.

When an executor process accepts a connection, the connection state transitions
from Running Binding to Running Bound. Once an executor for a session reusable
service accepts a connection, the executor remains bound to that connection for the
duration of the connection. Therefore, Running Bound is the predominant state of a
connection assigned to an executor for a session reusable service.

A connection transitions to the Canceling state when the application releases the
connection normally, or if the application terminates abnormally. A connection
typically remains in the Canceling state only momentarily. However, a connection
may remain in the Canceling state for a longer period of time if other database
activity delays the cleanup of an outstanding database transaction.

3.2.2 Client Connection States for Transaction Reusable Database Services
An executor for a transaction reusable service processes requests for one transaction
for one client at a time; however, the executor is shared by many concurrent client
connections. A transaction begins when a client issues an SQL statement that either

Client connects

Client application
terminates abnormally Executor accepts connection

Client submits requests

Client not
connected

Client application releases connection
or terminates abnormally

Running
Binding

Running
Bound

Canceling

Monitoring Client Connections

3-4 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

implicitly or explicitly starts a transaction. A transaction ends when the client issues
a successful SQL COMMIT or ROLLBACK statement or executes a stored procedure
that commits or rolls back a transaction. Once assigned to an executor process, a
client connection remains tied to that process for the life of the connection; no other
executor process can be used to process transactions on behalf of a particular
connection. A new client connection is normally assigned to the executor with the
least number of existing connections; however, for certain applications, it may be
necessary to change this behavior using the ALTER SERVICE APPLICATION
TRANSACTION USAGE CONCURRENT attribute.

Figure 3–2 shows the five possible connection states that a SHOW CLIENTS
command can display for a client connection when serviced by executors for a
transaction reusable database service relative to client and executor events. Of these
five states, the Running Binding and Running Bound states are of most interest.

Figure 3–2 Client Connection States for Transaction Reusable Database Services

 The connection from a new client attempting to connect to a transaction reusable
service is in a Running Binding state while it waits for the assigned executor to
accept the connection. Likewise, when an existing client begins a new transaction,
the connection is in a Running Binding state while it waits for the assigned executor
to process the new transaction. A connection remains in the Running Binding state

Client connects Running
Binding

Running
Bound

Canceling

Running
Unbound

Canceling
Binding

Canceling
Binding

Executor accepts
connection
Client submits request

Transaction in
progress

Transaction ends

Client submits
another request

Client application
terminates abnormally

Client application
terminates abnormally

Client not
connected

Client application
releases connection
or terminates
abnormally

Recovering from Failures

Maintaining an Oracle SQL/Services Server 3-5

until the executor completes the transaction for the current connection, plus any
other transactions for connections that may be queued up already waiting for the
executor. For well-designed applications that are executing short transactions,
connections remain in the Running Binding state for short periods of time.
However, this time increases as the rate at which clients execute transactions
increases and as the average length of transactions increases.

When an executor process binds to a new or an existing connection, the connection
state transitions from Running Binding to Running Bound. Once bound to a
connection, the executor remains bound to that connection until the end of the
transaction. In a new connection, the executor remains bound to the connection only
for the time necessary to establish a new database session for the new connection.
At the end of a transaction, or after accepting a new connection, the executor
unbinds from the connection, and the connection state transitions from Running
Bound to Running Unbound. When the connection starts a new transaction, the
connection state transitions from Running Unbound to Running Binding and the
cycle continues.

A connection in the Running Binding or Running Unbound state transitions to the
Canceling Binding state when the application releases the connection normally or
when the application terminates abnormally. When the executor completes the
transaction for the currently bound connection, plus any other transactions for
connections that may be queued up already waiting for the executor, the Canceling
Binding connection transitions from the Canceling Binding state to the Canceling
state. A connection in the Running Bound state transitions directly to the Canceling
state when the application releases the connection normally or when the application
terminates abnormally. When in the Canceling state, the executor cleans up the
database session of the connection, then unbinds from the connection for the last
time.

3.3 Recovering from Failures
Oracle SQL/Services handles process failures in different ways depending on the
type of process that fails.

3.3.1 Monitor Process Failures
Oracle SQL/Services does not attempt to recover if the monitor process fails. If a
monitor process does fail, then all of the processes in the server configuration are
shut down. In this way, a monitor process failure does not leave the system in an
inconsistent state.

Isolating Problems

3-6 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

3.3.2 Dispatcher Process Failures
Oracle SQL/Services does not automatically restart a failed dispatcher process;
however, the server will continue running unless the failure occurred during a
critical operation in which the integrity of the server might be compromised.
Therefore, you must manually restart a failed dispatcher process.

3.3.3 Executor Process Failures
Oracle SQL/Services automatically tries to restart a failed executor process unless
the failure occurred during a critical operation in which the integrity of the server
might be compromised. However, if an executor process fails more than twice
during startup, then Oracle SQL/Services shuts down the service and marks it as
failed.

3.4 Isolating Problems
You can isolate problems that you might experience with an Oracle SQL/Services
server system by:

■ Inspecting log files

■ Investigating different types of problems

The following sections describe what log files are generated, what is contained in
each type of log file, a number of different error conditions that you may encounter,
and how to identify a particular problem.

3.4.1 Inspecting Log Files
When a problem arises, you can attempt to isolate the problem by inspecting the log
files generated on the client side as well as those generated on the server side.

There are up to three kinds of logging on the client side:

■ Oracle SQL/Services client logging

■ ODBC logging

■ Winsock logging

3.4.1.1 Oracle SQL/Services Client Logging
You enable Oracle SQL/Services client logging by using a parameter to the sqlsrv_
associate routine, or using an sqsapiw.ini file for an sqsapi32.ini file for a Windows

Isolating Problems

Maintaining an Oracle SQL/Services Server 3-7

95 (32-bit) client, Windows 98, Windows 2000, or Windows NT X86 client. The
Oracle SQL/Services client API creates log files named clientxx.log in the
applications default directory. A clientxx.log file records calls to Oracle
SQL/Services API services data values and message protocol.

Check a clientxx.log file to see what SQL statements you are passing to the server,
or what error messages you are getting back from the server. See the Guide to Using
the Oracle SQL/Services Client API for more information.

3.4.1.2 ODBC Logging
If you are using the Oracle ODBC Driver for Rdb, you can turn on ODBC logging
using a win.ini file for an rdbodbc.ini file for a Windows 95 (32-bit), Windows 98,
Windows 2000, or Windows NT X86 client.

This type of logging records ODBC calls and entry points, the SQL statements your
application generates, and error messages. The log file is named odbcrdb.log and is
located in the working directory of your application.

3.4.1.3 Winsock Logging
If you are using a Winsock transport on Windows 95, Windows 98, Windows 2000,
or Windows NT X86, this logging option helps you diagnose network problems. It
is enabled using an sqsapi32.ini file for a Windows 95 (32-bit), Windows 98,
Windows 2000, or Windows NT X86 client. The log file is named sqsapiw.log and is
located in the working directory of your application.

See the Guide to Using the Oracle SQL/Services Client API for more information about
client log files.

Oracle SQL/Services uses the following convention to generate log file names for
server components, where nodename is the node name, component-id is the server
component, and version is the version number (for multiversion installation) or is
left blank (for a standard installation):

■ If the SCSNODE SYSGEN parameter is set

sqs_<nodename><component-id><instance><version>.log

■ If the SCSNODE SYSGEN parameter is blank

sqs_<component-id><instance><version>.log

There are several kinds of logging on the server side:

■ Oracle SQL/Services monitor log file

Isolating Problems

3-8 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ Oracle SQL/Services dispatcher log files

■ Oracle SQL/Services executor log files

3.4.1.4 Oracle SQL/Services Monitor Log File
Oracle SQL/Services logs the following information in the monitor log file:

■ Dispatcher and executor process startup and shutdown informational messages

■ Dispatcher and executor process failure error messages, including names and
locations of component log files

■ Oracle SQL/Services authentication and authorization failures for Oracle
SQL/Services system management clients

■ Name and location of a monitor process bugcheck dump if the monitor
encounters a nonrecoverable error

Use the following command to list monitor log files:

$ DIRECTORY SYS$MANAGER:SQS*MON*.LOG

For example:

SYS$MANAGER:SQS_NODE1_SQLSRV_MON_0071.LOG

3.4.1.5 Oracle SQL/Services Dispatcher Log Files
Oracle SQL/Services logs the following information in a dispatcher log file:

■ Oracle SQL/Services authentication and authorization failures for Oracle
SQL/Services and Oracle RMU clients

■ Server-side client network link disconnections due to executor process failures

■ Client-side client network link failures

■ Name and location of a dispatcher process bugcheck dump if the dispatcher
encounters a nonrecoverable error

Use the following command to list dispatcher log files (assuming you used "dis" in
the first 10 characters of the names of all of the dispatchers in your server):

$ DIRECTORY SYS$MANAGER:SQS*DIS*.LOG

For example, the dispatcher log file name for a dispatcher named SQLSRV_DISP
may appear as:

SYS$MANAGER:SQS_NODE1_SQLSRV_DIS00371.LOG

Isolating Problems

Maintaining an Oracle SQL/Services Server 3-9

3.4.1.6 Oracle SQL/Services Executor Log Files
Oracle SQL/Services logs the following information in an executor log file:

■ Executor process startup errors

■ Oracle Rdb authentication and authorization failures for Oracle SQL/Services
clients for database services with database authorization set to connect user

■ Oracle Rdb and SQL error messages

■ Name and location of an executor process bugcheck dump if the executor
encounters a nonrecoverable error

■ For OCI services, log messages for SQL*Net for Rdb as specified by the ALTER
SESSION LOG BRIEF or ALTER SESSION LOG FULL command.

Executor log files are created in the default directory of the service owner account.
For example, use the following commands to list executor log files for a service
named GENERIC with a service owner account named SQLSRV$DEFLT that has a
default directory of SYS$SYSDEVICE:[SQLSRV$DEFLT].

$ DIRECTORY SYS$SYSDEVICE:[SQLSRV$DEFLT]SQS*GENERI.LOG

For example:

SYS$SYSDEVICE:[SQLSRV$DEFLT]SQS_NODE1_GENERI004000171.LOG

3.4.2 Investigating Different Types of Problems
As a system administrator, you may be called upon to investigate a number of
different types of problems. The following is a set of general error conditions with
guidelines for each that may help you track down and identify a particular
problem.

3.4.2.1 Network Transport Problems
A problem sometimes experienced by new users or with a new server configuration
is the inability to connect to the server at all. In this situation, client applications
receive network (-2003 and -2036) errors from Oracle SQL/Services API routines.

In the event of this type of error, first verify that the dispatcher supporting the
selected transport is running and that the specified network port or object is active.
If you are using alternate network ports or objects in a multiversion environment,
verify that you specified the correct network port or object at the client. If the
dispatcher appears to be functioning correctly, use a transport-specific tool, such as
the TCP/IP Ping utility, to verify connectivity between the client and server nodes.

Isolating Problems

3-10 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

If the dispatcher is not running or the selected network port or object is not active,
check the dispatcher log to determine the reason for the problem. If a dispatcher
process fails completely, then Oracle SQL/Services writes the name and location of
the dispatcher log file to the monitor log. Check the dispatcher log file to determine
if a bugcheck dump was produced when the dispatcher failed.

3.4.2.2 User Authentication and Authorization Problems
Authentication and authorization (-2034, -2049, and -1028) errors are another class
of problems that may be experienced by new users. In this case, the server is
functioning correctly. However, users are unable to connect to the server or to a
particular service provided by the server.

You should first check the dispatcher log file to determine the reason for the error.
Remember to check the appropriate dispatcher log if you have configured multiple
dispatchers for different transports. For example, to resolve an authentication or
authorization problem, you may need to authorize network access or grant the
SQLSRV$CLIENT identifier to a user’s account. Or perhaps you need to grant access
to a particular service to a new user. All of these types of errors are logged in the
dispatcher log file.

If the user is connecting to a database service with database authorization set to
connect user, then you must also authorize the user’s account to access the database.
If a user is not authorized to access the database, then Oracle Rdb returns a no
privilege (-1008) error, the text of which Oracle SQL/Services returns to the client
application and writes to the executor’s log file.

3.4.2.3 Executor Failures During Service Startup
You may sometimes encounter errors when initially creating and starting a new
service. Whenever an executor process fails to start correctly, Oracle SQL/Services
writes the name of the executor’s log file to the monitor log. From the executor log,
you can then find the reason for the error.

For example, to determine why a new service fails after you start it, display the
contents of the monitor log to determine the log file names of the failed service’s
executors. Then display the contents of one of the executor log files to determine the
reason for the failure. For example, perhaps you typed an invalid SQL ATTACH
statement, mistyped the database file name, or perhaps you did not grant the right
to attach to the database to the service owner account of a database service. All
problems such as these result in the service’s SQL ATTACH statement failing.

Isolating Problems

Maintaining an Oracle SQL/Services Server 3-11

3.4.2.4 Executor Problems During Client Connect
In some situations, a service may start successfully, but an executor process created
for a new client connection might fail during startup. This can happen if the MIN_
EXECUTORS attribute of a service is set to 0. In this case, you can successfully start
the service, but the service eventually changes to the failed state as executors
created for new client connects fail during startup. This problem can also occur if a
database is changed after a service is started. For example, if the right to attach to
the database is revoked from the service owner account of a database service after
the service is started and the minimum number of executors have been created,
then new executors that are created for the service will fail trying to execute the
service’s ATTACH statement.

If a user tries to connect to a service and an executor created for the new connect
fails during startup, the monitor records the executor failure event in the monitor
log together with the name of the executor log. The dispatcher then logs a summary
error message in the dispatcher log and returns the executor failed (-2035) error
code to the client application along with an executor startup error message. If a user
tries to connect to a service that previously changed to the failed state, then the
dispatcher logs the event in the dispatcher and returns the executor failed (-2035)
error code to the client application along with a service failed error message.

To investigate problems of this nature, first check the dispatcher log to determine
why new client connects are being rejected. Then review the monitor log to find an
entry detailing an executor failure for the service. Finally, check the executor log to
determine the reason for the failure.

3.4.2.5 Executor Problems During Client Request Execution
You may experience a situation where most users are successfully accessing a
service, but the executor for one particular user fails. In this situation, the dispatcher
returns the executor failed (-2035) error to the client application and the monitor
records the executor failure event in the monitor log, together with the name of the
executor log. You first check the monitor log to determine the name of the log file
for the failed executor, then check the log of the executor to determine the reason for
the failure. For example, perhaps data being accessed by a particular user is located
on a disk that is beginning to fail. Alternatively, perhaps Oracle SQL/Services or
Oracle Rdb or SQL encountered an internal error. In this situation, check the
executor log file to see if a bugcheck dump file was produced by one of these
components.

Solving Server Errors

3-12 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

3.4.2.6 Server Failed Due to an Internal Error
In extremely rare circumstances, it is possible for an entire server to fail. For
example, perhaps a component encountered an internal error and failed while
performing a critical operation. In this situation, the entire server shuts down so as
not to further compromise the integrity of the server configuration.

The Oracle SQL/Services monitor process manages all of the processes in an Oracle
SQL/Services server configuration. Therefore, the monitor log file is the best place
to start. In this situation, the monitor will always produce a bugcheck dump;
however, the reason for the error may have been the earlier failure of a dispatcher or
executor process. Therefore, your next step is to review the log files of any
dispatchers and executors that failed just prior to the server failure. Check these log
files for references to any Oracle SQL/Services and Oracle Rdb and SQL bugcheck
dumps.

If you find a reference to a bugcheck dump file while isolating a problem, refer to
Section 3.6 for more information about submitting a problem report form to Oracle
Corporation. The bugcheck dump file is directed by default to SYS$MANAGER
unless you specified another location by using the CREATE SERVER or ALTER
SERVER command. The only exception is that executor bugcheck dump files are
written to the current default directory.

3.5 Solving Server Errors
The server error message files contain all of the server errors with explanations of
the error and possible user actions. PostScript and text versions of the server error
message files are located in the following directories:

■ SYS$HELP:sqlsrv_messages71.ps - Oracle SQL/Services server error message
PostScript file

■ SYS$HELP:sqlsrv_messages71.txt - Oracle SQL/Services server error message
text file

3.6 Reporting Software Problems
Contact your Oracle Corporation support representative for assistance.

If you experience problems with the server, include the following items on magnetic
tape along with your problem report:

■ Copies of the monitor log files, dispatcher log files, any applicable executor log
files, and any relevant client log files

Reporting Software Problems

Maintaining an Oracle SQL/Services Server 3-13

■ A copy of the Oracle SQL/Services configuration file

■ Copies of any bugcheck dump files produced

Reporting Software Problems

3-14 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Management Commands 4-1

4
Management Commands

This chapter describes the syntax and semantics of the SQLSRV_MANAGE utility
of Oracle SQL/Services. This utility is used to manage the Oracle SQL/Services
server and its components. See Section 4.1 for a description of syntax conventions.

See the Oracle SQL/Services Manager GUI help for information on using this
utility.

The SQLSRV_MANAGE commands include management commands (definitional,
show, and operational) and environment commands and switches. Section 4.2
describes how the SQLSRV_MANAGE management commands work.

4.1 Syntax Conventions
The SQLSRV_MANAGE utility uses the following syntax conventions and
semantics for both its environment and management commands:

[] Brackets enclose optional clauses from which you can choose none, one, or
more of the enclosed options. Do not include brackets in your option.

{ } Braces indicate that you must choose at least one of the enclosed options.
Do not include braces in your option.

| The vertical bar means that you can select only one of the options shown.

, The comma means that you can choose as many of the options shown as
you like, separating your choices with commas to be typed as part of the
command.

< > Angle brackets enclose user-supplied names.

::= An argument followed by a double colon and equal sign represents the
definition of the argument.

Syntax Conventions

4-2 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

The following syntax and semantics are also used.

<identifier>
An <identifier> is a string starting with a letter and composed of letters (a to z, A to
Z), numbers (0 to 9), hyphens (-), and underscores (_). Such identifiers are in
uppercase. For example:

AARDVARK_1-1101

<quoted-string>
A <quoted-string> can use either single or double quotation marks containing any
characters within it except a new line character. For example:

’user1’
"Today is 5/6/94"

Single-quoted strings can contain embedded double quotation marks, and double
quoted strings can contain embedded single quotation marks. For example:

’Contestant number three said, "My name is Data"’
"Today’s beach report is ’sunny and warm’"

A new line character inside a string is assumed to be a syntax error; that is, an
unterminated quoted string.

Quoted strings are also useful for representing strings that start with a number. For
example:

’71_user’

White
space and
new lines

White space and new lines (carriage returns) are not significant in the
syntax diagram.

Keywords Keywords are not case sensitive. Keywords are presented in uppercase
characters and are underlined.

 . . . Horizontal ellipsis points in commands mean that parts of the command
not directly related to the example have been omitted.

; All statements must be terminated with a semicolon (;) with the exception
of the EXIT and HELP commands, in which the semicolon is optional.

Syntax Conventions

Management Commands 4-3

<number>
A <number> is an integer. It can start with a plus or minus sign and can consist of
one or more numbers from 0 to 9. Numbers can be represented either in decimal or
hexadecimal format. To represent a number in hexadecimal format, precede the
numeric value with the value ’0x’ or ’0X’. For example:

-0123456789
0x0000088a

<version-data-type>
A <version-data-type> is a software version number with a major and minor
version number consisting of one or more numbers from 0 to 9, separated by a
decimal point. The major version number is to the left of the decimal point and the
minor version number is to the right of the decimal point. The syntax is as follows:

n[nnn...].n[nnn...]

For example:

7.1
6.10

Comments
Comments start with two consecutive hyphens (– –) and continue to the next new
line. For example:

-- This is a comment line.

Order of Command Arguments
The order of the command arguments of the management commands is not
important. If you enter a command that contains two or more arguments, the
arguments do not need to be in the order presented in the format description of that
command.

Use of Underscores Between Keywords in Arguments
On the command-line interface, a space can replace the underscore between any
keywords in arguments. For example, rather than enter the two keywords
NETWORK_PORT (with the underscore separator), you can enter NETWORK
PORT (with a space separator) on the command line, and the SQLSRV_MANAGE
utility correctly parses these two keywords without returning an error.

How SQLSRV_MANAGE Commands Work

4-4 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SQL Initialization Files
SQL initialization files use the following syntax conventions:

■ Leading and trailing white space on a line is ignored.

■ Comments start with two consecutive hyphens (– –), must start at the beginning
of a line, and continue to the next new line.

■ Each SQL initialization statement must be able to be dynamically prepared,
executed, and released by the SQL EXECUTE IMMEDIATE statement.

■ SQL statements cannot span multiple lines.

■ A trailing semicolon (;) at the end of an SQL statement is ignored to allow SQL
initialization files to be invoked and verified using interactive SQL.

The following example illustrates a sample SQL initialization file:

--
-- This SQL initialization file sets the SQL dialect and default
-- character set for an executor process.
--
SET DIALECT ’SQL89’;
SET DEFAULT CHARACTER SET ’KANJI’;

4.2 How SQLSRV_MANAGE Commands Work
SQLSRV_MANAGE commands work as follows.

Server Configuration Commands
The following commands operate on the server, dispatcher, and service objects in a
server configuration:

■ ALTER SERVER, CONNECT TO SERVER, CREATE SERVER, DISCONNECT
SERVER, DROP SERVER, RESTART SERVER, SET CONFIG_FILE, SET
CONNECTION, SHOW SERVER, SHOW SETTINGS, SHOW VERSION,
SHUTDOWN SERVER, START SERVER

■ ALTER DISPATCHER, CREATE DISPATCHER, DROP DISPATCHER, SHOW
DISPATCHER, SHUTDOWN DISPATCHER, START DISPATCHER

■ ALTER SERVICE, CREATE SERVICE, DROP SERVICE, GRANT USE ON
SERVICE, KILL EXECUTOR, REVOKE USE ON SERVICE, SHOW CLIENTS
FOR SERVICE, SHOW SERVICE, SHUTDOWN SERVICE, START SERVICE

How SQLSRV_MANAGE Commands Work

Management Commands 4-5

Environment Use Commands and Switches
The following commands operate on the SQLSRV_MANAGE system management
environment:

■ –input and –output switches

■ SHOW CONNECTS, SHOW SETTINGS

■ CONNECT TO SERVER, DISCONNECT SERVER, SET CONFIG_FILE, SET
CONNECTION

■ @ , CLOSE, EXIT, HELP, OPEN, SET CONFIRM, SET OUTPUT, SET VERIFY

Table 4–1 describes the three different groups of Oracle SQL/Services objects and
shows how each object is acted upon by a set of command verbs.

Table 4–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a
Command

Object Command Description

Dispatcher ALTER Change a dispatcher object definition
in the configuration file and
dynamically change selected
attributes for a running server.

CREATE Create a dispatcher object for the
current server and add the definition
to the configuration file.

DROP Delete a dispatcher object definition
for an inactive dispatcher for the
current server from the configuration
file.

SHOW Show a dispatcher object definition.

SHUTDOWN Shut down the specified dispatcher
object.

START Start a dispatcher process for the
defined dispatcher object for the
current server.

Server ALTER Change a server object definition in
the configuration file and dynamically
change selected attributes for a
running server.

CONNECT Connect to a running server.

How SQLSRV_MANAGE Commands Work

4-6 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

CREATE Create a configuration file and a
server object.

DISCONNECT Disconnect from a running server.

DROP Delete a server object definition and
delete the configuration file for an
inactive server.

RESTART Restart the server including all
automatically started dispatchers and
services for the current server object.

SET CONFIG_FILE Set the current configuration so
subsequent commands can modify a
server’s configuration file.

SET CONNECTION Set the connection to the server object
with the specified connection name.

SHOW Show the server object definition.

SHOW SETTINGS Show the current configuration file.

SHOW VERSION Show the version of the SQLSRV_
MANAGE management client.

SHUTDOWN Shut down the current server object.

START Start the server, including all
automatically started dispatcher and
executor processes for the current
server object.

Service ALTER Change a service object definition in
the configuration file and dynamically
change selected attributes for a
running service.

CREATE Create a service object and add the
definition to the configuration file.

DROP Delete a service object definition from
the configuration file for an inactive
service.

GRANT USE ON Grant the USE privilege descriptor for
a service object to a user name or
identifier.

Table 4–1 (Cont.) Oracle SQL/Services Objects and How Each Object Is Acted Upon
by a Command

Object Command Description

How SQLSRV_MANAGE Commands Work

Management Commands 4-7

Table 4–2 describes the SQLSRV_MANAGE environment commands and switches.

KILL EXECUTOR Kill an executor process.

REVOKE USE ON Revoke the USE privilege descriptor
for a service object from a user name
or identifier.

SHOW CLIENTS Show the active users of a service.

SHOW Show a service object definition
including the USE privilege descriptor
for a service object for all user names
and identifiers.

SHUTDOWN Shut down the specified service
object.

START Start the specified service object.

Table 4–2 SQLSRV_MANAGE Environment Commands and Switches

Command or Switch Description

–input switch Specify the name of an input file from which the SQLSRV_
MANAGE utility reads input.

–output switch Specify the name of an output file to which the SQLSRV_
MANAGE utility writes output.

@ Run an indirect command file.

CLOSE Close an output file.

CONNECT TO SERVER Connect to a running server.

DISCONNECT SERVER Disconnect from a running server.

EXIT Exit the SQLSRV_MANAGE utility.

HELP Get help on a topic.

OPEN Open an output file.

SET CONFIG_FILE Set the current configuration so that subsequent commands can
modify a server's configuration file.

SET CONFIRM Require confirmation for certain management operations.

Table 4–1 (Cont.) Oracle SQL/Services Objects and How Each Object Is Acted Upon
by a Command

Object Command Description

How SQLSRV_MANAGE Commands Work

4-8 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SET CONNECTION Change the current connection to a server to another connection
from among a group of established connections.

SET OUTPUT Direct output to the default device when enabled.

SET VERIFY Echo command file input to the default output device as it is
read.

SHOW CONNECTS Show information about the current server object and all of the
active connections that SQLSRV_MANAGE has to servers.

SHOW SETTINGS Show information about the verify and output settings.

SHOW VERSION Show the version of the SQLSRV_MANAGE management
client.

Table 4–2 (Cont.) SQLSRV_MANAGE Environment Commands and Switches

Command or Switch Description

–input Switch

Management Commands 4-9

–input Switch

Specifies the name of the input file from which the SQLSRV_MANAGE utility reads
input.

Format

Arguments

<file-spec>
The input file name. The file name is expressed either as an identifier or as a quoted
string.

Usage Notes
■ –i and –in are synonyms for the –input command.

■ The SQLSRV_MANAGE utility does not prompt for input, and exits when the
specified file is completely read.

■ You cannot enter the –input switch at the SQLSRV prompt.

Examples
Example 1: Specify an input file from which the SQLSRV_MANAGE utility reads
input.

$ sqlsrv_manage -input sqlsrv_create.sqs

–i[n[put]] <file-spec>;

<file-spec> ::=<identifier> or <quoted-string>

–output Switch

4-10 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

–output Switch

Specifies the name of the output file to which the SQLSRV_MANAGE utility writes
output.

Format

Arguments

<file-spec>
The output file name. The file name is expressed either as an identifier or as a
quoted string.

Usage Notes
■ –o and –out are synonyms for the –output switch.

■ The SQLSRV_MANAGE utility writes all output to the specified file until a
CLOSE or OPEN command is executed. If a CLOSE command is issued,
subsequent output is sent to standard output. If an OPEN command is issued,
output is sent to the new output file.

■ You cannot enter the –output switch at the SQLSRV prompt.

Examples
Example 1: Specify an output file to which the SQLSRV_MANAGE utility writes
output.

$ sqlsrv_manage -output out_testfile

–o[ut[put]] <file-spec>;

<file-spec> ::=<identifier> or <quoted-string>

@ Command

Management Commands 4-11

@ Command

Runs an indirect command file in the SQLSRV_MANAGE environment.

Format

Arguments

<file-spec>
The indirect command file name. The file name is expressed as either an identifier
or as a quoted string.

Usage Notes
When executed, the indirect command file is opened and input is taken from that
file until either a syntax error occurs or there are no more characters in the file.

Examples
Example 1: Run an indirect script named test_file.sqs. Use a quoted string if it is
important to preserve case.

SQLSRV> @ ’test_file.sqs’;

@ <file-spec>;

<file-spec> ::=<identifier> or <quoted-string>

ALTER DISPATCHER Command

4-12 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

ALTER DISPATCHER Command

Changes a dispatcher object definition for the current server only. Changes to a
dispatcher definition are stored in the configuration file. Offline dispatcher changes
do not affect a running server. Online dispatcher changes affect the running server if
the change is to a dynamic attribute; otherwise, the dispatcher must be shut down
and started again or the server restarted for dispatcher changes to take effect.

Format

ALTER DISPATCHER <disp-name>

–>[AUTOSTART { ON | OFF}]

–>[MAX_CONNECTIONS <conn-num>]

–>[IDLE_USER_TIMEOUT <timeout-num>]

–>[MAX_CLIENT_BUFFER_SIZE <buf-num>]

–>[<network-port-spec>] ...;

<disp-name> ::=<identifier>

<conn-num> ::=<number>

<timeout-num> ::=<number>

<buf-num> ::=<number>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

 PROTOCOL <message-protocol>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> | <ipxspx-spec>

 | sqlnet-spec> }

<tcp-spec> ::=TCPIP [<tcpip-port-spec>]

<tcpip-port-spec> ::=PORT_ID <tcpip-port-num>

<tcpip-port-num> ::=<number>

<decnet-spec> ::=DECNET [<decnet-object-spec>]

ALTER DISPATCHER Command

Management Commands 4-13

Arguments

<disp-name>
The dispatcher name. The dispatcher name is expressed as an identifier.

AUTOSTART {ON | OFF}
Determines whether or not the dispatcher object automatically starts up when you
issue a START SERVER or RESTART SERVER command. If the argument is
specified as ON, the dispatcher object automatically starts when you issue a START
SERVER or RESTART SERVER command. The default is ON.

MAX_CONNECTIONS <conn-num>
Specifies the maximum number of network connections from clients that the
dispatcher accepts. The maximum number of connections is expressed as an integer.
The default is 100. There is no upper limit other than the operating system
configuration, the network configuration, and shared server memory.

IDLE_USER_TIMEOUT <timeout-num>
Specifies the amount of time in seconds that a client (user) can remain idle before
the dispatcher disconnects the client. The <timeout-num> value is expressed as an
integer. The default value is 0, which displays as none in a SHOW DISPATCHER
command and means that the idle timeout value is infinite. A value specified other
than 0 is rounded to the next higher multiple of 90 seconds. This is a dynamic
attribute that, when changed, takes effect immediately.

MAX_CLIENT_BUFFER_SIZE <buf-num>
Specifies the size of the maximum client buffer size permitted. The maximum
allowed client buffer size is 32,000 bytes. If a client application specifies a buffer size

<decnet-object-spec> ::=[OBJECT { <number>

 | <identifier> | <quoted-string> }]

<ipxspx-spec> ::=IPXSPX [<ipxspx-port-spec>]

<ipxspx-port-spec> ::=PORT_ID <ipxspx-port-num>

<ipxspx-port-num> ::=<number>

<sqlnet-spec> ::=SQLNET <sqlnet-port-spec>

<sqlnet-port-spec> ::=LISTENER_NAME <listener-name>

<listener-name> ::={ <identifier> | <quoted-string> }

<message-protocol> ::={ NATIVE | OCI | SQLSERVICES }

ALTER DISPATCHER Command

4-14 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

larger than the maximum, then the Oracle SQL/Services client API adjusts the
buffer size to the maximum size specified for the dispatcher. The default and
minimum value allowed for the MAX_CLIENT_BUFFER_SIZE attribute is 5000
bytes.

<network-port-spec>
Lists network ports that the dispatcher should use for communications with Oracle
SQL/Services clients and Oracle ODBC Driver for Rdb clients. The network port
specification is any one or any combination of the following: TCP/IP, DECnet,
IPX/SPX, and SQL*Net. The default port ID for TCP/IP is 118, the default DECnet
object is 81, and the default port ID for IPX/SPX is 33969 (0x84b1). If the network
port is not specified, the dispatcher will use the default ports. The maximum
number of times that the <network-port-spec> argument can be specified in the
ALTER DISPATCHER command is 5. The <network-port-spec> argument can be
repeated to include multiple SQL*Net Listener Names.

Also determines the message protocol that each dispatcher network port can
support. A dispatcher network port can support only one message protocol. Specify
a message protocol that matches the type of client you want a dispatcher network
port to support:

■ NATIVE

Oracle RMU clients (Oracle Rdb Performance Monitor, Oracle RMUwin,
Parallel Backup Monitor)

■ OCI

Oracle clients using the Oracle Call Interface (OCI) (Oracle Enterprise Manager
clients)

■ SQLSERVICES

Oracle SQL/Services clients (Query Performance Tuner, Oracle ODBC Driver
for Rdb, Oracle SQL/Services, Oracle Rdb Schema Manager)

ALTER DISPATCHER Command

Management Commands 4-15

Usage Notes
■ In general, any specified clauses in the ALTER DISPATCHER definition replace

the specification of items in the previous server definition. That is, if a clause is
specified in the ALTER DISPATCHER command, then the specification of items
for that clause is changed in the definition. If no clause is specified, the
specification of items remains unchanged for that clause.

■ If a network port is altered, the entire network port specification is replaced.
Thus, you can add a network port to the existing list with the ALTER
DISPATCHER command, but you must respecify all other network port
specifications to retain them in the configuration file.

■ To use the SQL*Net transport option, specify the SQL*Net transport option as
<sqlnet-spec> in the <transport-spec> argument and specify the SQL*Net
Listener Name as its <identifier> argument.

■ The word LISTENER_NAME is a synonym for the keyword LISTENER.

Examples
Example 1: Dynamically alter the idle user timeout value.

SQLSRV> ALTER DISPATCHER tcpip_disp IDLE_USER_TIMEOUT 180;

Example 2: Alter a dispatcher to use the SQL*Net protocol. This command removes
all other ports for this dispatcher. You must respecify all existing network ports to
prevent the loss of previously defined network ports for this dispatcher.

SQLSRV> ALTER DISPATCHER sqlnet_disp NETWORK_PORT SQLNET LISTENER_NAME "LISTENER";
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> SHUTDOWN DISPATCHER sqlnet_disp;
SQLSRV> START DISPATCHER sqlnet_disp;

Note: Ensure that you have a dispatcher network port defined
with a dispatcher message protocol that supports each service API
protocol you want to use. For example, if you define a service that
supports the OCI API protocol and another service that supports
the SQLSERVICES API protocol, you must define at least one
dispatcher network port that supports the OCI dispatcher message
protocol and the SQL*Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

ALTER SERVER Command

4-16 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

ALTER SERVER Command

Changes a server object definition. Changes to a server definition are stored in the
configuration file. Offline server changes do not affect a running server. Online
server changes affect the running server if the change is to a dynamic attribute;
otherwise, the server must be shut down and started again or restarted for changes
to take effect.

Format

ALTER SERVER

–>[MAX_SHARED_MEMORY_SIZE <mem-size>]

–>[PROCESS_STARTUP_TIMEOUT <process-startup-timeout>]

–>[PROCESS_SHUTDOWN_TIMEOUT <process-shutdown-timeout>]

–>[<network-port-spec>]...;

<mem-size> ::=<number>

<log-path> ::=<quoted-string>

<dump-path> ::=<quoted-string>

<lock-path> ::=<quoted-string>

<shared-memory-path> ::=<quoted-string>

<process-startup-timeout> ::=<number>

<process-shutdown-timeout> ::=<number>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [<tcpip-port-spec>]

<tcpip-port-spec> ::=PORT_ID <tcpip-port-num>

<tcpip-port-num> ::=<number>

<decnet-spec> ::=DECNET [<decnet-object-spec>]

<decnet-object-spec> ::=[OBJECT {<number> | <identifier>

ALTER SERVER Command

Management Commands 4-17

Arguments

MAX_SHARED_MEMORY_SIZE <mem-size>
Specifies the size in kilobytes of the maximum shared memory the server should
use. The <mem-size> argument is a number. If the value is changed, that value
becomes the maximum shared memory size when the monitor starts up. The
default value is 2000 kilobytes or 2 megabytes. Oracle SQL/Services allocates the
maximum shared memory size when the monitor starts up. The practical upper
limit is dependent on the amount of disk space available.

PROCESS_STARTUP_TIMEOUT <process-startup-timeout>
Specifies the length of time to wait before deciding that a dispatcher or executor
process is not going to start up before the monitor takes action and terminates the
process. The <process-startup-timeout> argument is a number expressed in
seconds. The default value is 0 seconds, which means that no process startup timer
value is set. This is a dynamic attribute that, when changed, takes effect
immediately. See the Usage Notes for more information.

PROCESS_SHUTDOWN_TIMEOUT <process-shutdown-timeout>
Specifies the length of time to wait before deciding that a dispatcher or executor
process is not going to shut down before the monitor takes action and terminates
the process. The <process-shutdown-timeout> argument is a number expressed in
seconds. The default value is 0 seconds, which means that no process shutdown
timer value is set; the process shutdown timer value is infinite. This is a dynamic
attribute that, when changed, takes effect immediately. See the Usage Notes for
more information.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services management clients (SQLSRV_MANAGE and the Oracle
SQL/Services Manager GUI). The network port specification is TCP/IP or DECnet.
The default port ID for TCP/IP is 2199 and the default DECnet object name is
SQLSRV_SERVER. If no network ports are specified, the monitor of the server uses
the default ports. The maximum number of times that the <network-port-spec>
argument can be specified in the ALTER SERVER command is 5. If a network port is
altered, the entire network port specification is replaced.

DECnet or TCP/IP must be available on the node for which the ALTER SERVER
definition is used. If none of these are available, then the server will not run.

 | <quoted-string> }]

ALTER SERVER Command

4-18 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Usage Notes
■ The server definition can be altered online using the CONNECT TO SERVER

command or offline if you select its configuration file using the SET CONFIG_
FILE command. Online changes for dynamic attributes take effect immediately.
When you make an online change of a nondynamic attribute, a status message
is returned indicating that you must restart the server to have altered settings
take effect. Oracle Corporation recommends that you immediately restart the
running server after you complete your management session to ensure the
overall consistency of the Oracle SQL/Services server. (To restart the running
server, issue the RESTART SERVER command.)

■ In general, any specified clauses in the ALTER SERVER definition replace the
specification of items in the previous server definition. That is, if a clause is
specified in the ALTER SERVER command, then the specification of items for
that clause is changed in the definition. If no clause is specified, the
specification of items remains unchanged for that clause.

■ If you want to set process startup and shutdown timers, follow these
guidelines:

– Usually dispatcher and executor processes start up and shut down in a
reasonable period of time. Only during an unusual situation would you
need to specify nonzero values for the PROCESS_STARTUP_TIMEOUT and
PROCESS_SHUTDOWN_TIMEOUT arguments.

– In heavily loaded systems, it often takes longer for a particular operation to
complete. If either process startup or process shutdown is set to a value
other than zero and fails for no apparent reason (you have checked other
possible causes and have not isolated the problem), set a higher value for
the PROCESS_STARTUP_TIMEOUT argument or the PROCESS_
SHUTDOWN_TIMEOUT argument to see if that solves the problem.

■ The SQLSRV_MANAGE utility attempts to connect to the monitor of the server
using the default TCP/IP or DECnet ports. If you change the network port of
the server, you must also specify that port explicitly when connecting from the
SQLSRV_MANAGE utility.

■ If a network port is altered, the entire network port specification is replaced.
Thus, you can add a network port to the existing list with the ALTER SERVER
command, but you must respecify all other network port specifications to retain
them in the configuration file.

■ If the same port ID is specified more than once, an error is returned.

ALTER SERVER Command

Management Commands 4-19

Examples
Example 1: Alter a server definition online.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 4000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;
Disconnected from Server
SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

Example 2: Alter a server definition offline.

SQLSRV> SET CONFIG_FILE ‘my_config_file’;
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 4000;
SQLSRV> RESTART SERVER;
Connecting to server ...
Connected

ALTER SERVICE Command

4-20 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

ALTER SERVICE Command

Changes a service object definition for the current server only. Changes to a service
definition are stored in the configuration file. Offline service changes do not affect a
running server. Online service changes affect the running server if the change is to a
dynamic attribute; otherwise, the service must be shut down and started again or
the server restarted for service changes to take effect.

Format

ALTER SERVICE <service-name>

–> [PROTOCOL { OCI | RMU | SQLSERVICES }]

–>[AUTOSTART { ON | OFF }]

–>[DEFAULT_CONNECT_USERNAME <user-string>]

–>[REUSE [SCOPE] [IS] { SESSION | TRANSACTION }]

–>[SQL_VERSION { <ver-num> | S[TANDARD] }]

–>[PROCESS_INITIALIZATION { <proc-init-file-string> | LOGIN }]

–>[ATTACH <attach-string>]

–>OWNER <user-string>

–>[SCHEMA <schema-string>]

–>[SQL_INIT_FILE <sql-init-file-string>]

–>[DATABASE_AUTHORIZATION { [SERVICE] OWNER

 | [CONNECT] USERNAME }]

–>[APPLICATION_TRANSACTION_USAGE { SERIAL | CONCURRENT }]

–>[IDLE_USER_TIMEOUT <timeout-num>]

–>[IDLE_EXECUTOR_TIMEOUT <timeout>]

–>[MIN_EXECUTORS <min>]

–>[MAX_EXECUTORS <max>]

–>[CLIENTS_PER_EXECUTOR <clients-per-executor>] ;

ALTER SERVICE Command

Management Commands 4-21

Arguments

<service-name>
The service name. The service name is expressed as an identifier.

PROTOCOL {OCI | RMU | SQLSERVICES}
Determines the application programming interface (API) protocol that each service
can support. A service can support only one API protocol. Specify an API protocol
that matches the type of client you want a service to support:

■ OCI

Oracle clients using the Oracle Call Interface (OCI) (Oracle Enterprise Manager
clients)

■ RMU

Oracle RMU clients (Oracle Rdb Performance Monitor, Oracle RMUwin,
Parallel Backup Monitor)

■ SQLSERVICES

<service-name> ::=<identifier>

<user-string> ::={ <quoted-string> | <identifier> }

<ver-num> ::=<version-data-type>

<proc-init-file-string> ::=<quoted-string>

<attach-string> ::=<quoted-string>

<schema-string> ::=<quoted-string>

<locale-string> ::=<quoted-string>

<rc-file-string> ::=<quoted-string>

<sql-init-file-string> ::=<quoted-string>

<timeout-num> ::=<number>

<timeout> ::=<number>

<min> ::=<number>

<max> ::=<number>

<clients-per-executor> ::=<number>

ALTER SERVICE Command

4-22 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Oracle SQL/Services clients (Query Performance Tuner, Oracle ODBC Driver
for Rdb, Oracle SQL/Services, Oracle Rdb Schema Manager)

AUTOSTART {ON | OFF}
Determines whether or not the service object automatically starts up when you
issue a START SERVER or RESTART SERVER command. If the argument is
specified as ON, the service object automatically starts when you issue a START
SERVER or RESTART SERVER command. The default is ON.

DEFAULT_CONNECT_USERNAME <user-string>
The <user-string> argument is either a quoted string or an identifier containing the
user name under which unknown users will be allowed to connect to the service.
See Section 2.7 and Section 2.8 for more information about using this argument. This
is a dynamic attribute that, when changed, takes effect immediately.

REUSE SCOPE IS {SESSION | TRANSACTION}
■ SESSION

An executor for a session reusable service processes requests for one client
session at a time. A session begins when a client connects to the service and the
connection is bound to an executor process. A session ends when a client
disconnects from the service and the connection is unbound from the executor
process.

■ TRANSACTION

An executor for a transaction reusable service processes requests for one
transaction at a time; however, it supports many concurrent client sessions. A
transaction begins when a client issues an SQL statement that either implicitly
or explicitly starts a transaction. A transaction ends when a client issues a
successful SQL COMMIT or ROLLBACK statement. The REUSE SCOPE IS
TRANSACTION argument may be applied only to database services.

Note: Ensure that you have a dispatcher network port defined
with a dispatcher message protocol that supports each service API
protocol you want to use. For example, if you define a service that
supports the OCI API protocol and another service that supports
the SQLSERVICES API protocol, you must define at least one
dispatcher network port that supports the OCI dispatcher message
protocol and the SQL*Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

ALTER SERVICE Command

Management Commands 4-23

See Section 2.6 for more information.

SQL_VERSION {<ver-num>| STANDARD}
Specifies the version of SQL to use for that service. It is expressed as either a version
number data type (for example, 7.1) for selecting a version of SQL in an Oracle Rdb
multiversion environment or by the keyword STANDARD (or S) for running a
standard version of SQL in an Oracle Rdb single version environment. Either value
is used as the first parameter argument for the Oracle Rdb RDB$SETVER command
procedure when it runs, as described in the installation information. The version
number resolves to an "n.n" or "s" parameter argument and the word STANDARD
or S resolves to an S parameter argument. When no value is specified, the default is
the keyword STANDARD.

PROCESS_INITIALIZATION {<proc-init-file-string> | LOGIN}
The process initialization file can be either a special process initialization file
specified as a <quoted-string> or the keyword LOGIN, which resolves to the default
login in the user authorization file (UAF). The process initialization or login file is
used to help define some of the attributes of the executor process for this service. If
no argument is specified, the default is not to run any initialization file.

ATTACH <attach-string>
The SQL ATTACH statement.

If you do not specify an SQL ATTACH statement, you create a universal service that
is not preattached to a specific database.

If you specify an SQL ATTACH statement, you create a database service that is
preattached to the specified database.

The <attach-string> argument is a single-quoted string and is exactly the same
format as the attach-string-literal used in dynamic SQL.

See the Oracle Rdb7 SQL Reference Manual for more information on the ATTACH
statement.

OWNER <user-string>
Specifies the user name of the owner of the service. Every service has an owner user
name. The user name must be specified; otherwise, an error message is returned.

If the service is a database service, then the service owner user name privileges are
used for access checks when an executor attaches to the specified database. See
Section 2.6 for more information on database services.

If the database access authorization is by the service owner, then the service owner
user name privileges are used for all database access operations. See the

ALTER SERVICE Command

4-24 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

DATABASE_AUTHORIZATION argument, later in this argument list, for more
information on database access authorization.

Executors are created with the privileges and quotas from the account of the service
owner. See Section 2.9.1 for more information.

The <user-string> argument is either a quoted string or an identifier.

SCHEMA <schema-string>
Provides a way to specify the default schema that you want to use when an
executor attaches to a multischema database. The default schema name is set (for all
service types) as shown in Table 4–3.

The schema argument allows the default to be overridden. The <schema-string>
argument is a quoted string.

SQL_INIT_FILE <sql-init-file-string>
Specifies a file containing SQL statements that tailor the SQL environment for a
client connection. For example, you can set the SQL dialect and default character set
by using an SQL initialization file. The statements in an SQL initialization file are
executed every time a client connects to a service.

The <sql-init-file-string> argument is a quoted string. See Section 4.1 for more
information about using an SQL initialization file.

DATABASE_AUTHORIZATION {[SERVICE] OWNER | [CONNECT] USERNAME}
Determines the user name under which access to the database is made. The default
is CONNECT USERNAME.

■ SERVICE OWNER

Table 4–3 Default Schema Name Used When an Executor Is Bound to a Multischema
Database

Schema Name
Specified in
Service Definition

Database Access
Authorization

Default Schema Name Set by
Using

Yes Service owner
Connect user name

Name specified in service definition
Name specified in service definition

No Service owner
Connect user name

Service owner account name
Connect user name (see
Section 2.12)

ALTER SERVICE Command

Management Commands 4-25

For a database service, access to the database is made by using the service
owner user name.

■ CONNECT USERNAME

Access to the database is made by using the client-specified user name, the
DECnet proxy user name, or the user name specified in the DEFAULT_
CONNECT_USERNAME argument.

For more information on database access authorization, see Section 2.7 and
Section 2.8.

APPLICATION_TRANSACTION_USAGE {SERIAL | CONCURRENT}
Applies only to transaction reusable database services. Some applications make
only a single connection to a service to perform their work, while other applications
make multiple connections to the same service. Connections created to transaction
reusable database services are tied to the same executor for the life of the session.

If a client application makes multiple connections to a service and these are
assigned to the same executor, a deadlock occurs if the client application attempts to
start a new transaction on one connection before ending an existing transaction on
another connection. When you specify the CONCURRENT keyword, Oracle
SQL/Services ensures that multiple connections from the same client application on
the same node are never assigned to the same executor process.

When you specify the SERIAL keyword, Oracle SQL/Services assumes that client
applications do not start concurrent transactions on multiple connections. Oracle
SQL/Services assigns connections to executor processes on a least busy basis (the
executor process with the fewest client connections already assigned). Thus, if a
client application made more than one connection to the same service and the
keyword SERIAL was specified, the second connection may or may not have gone
to the same executor process as the first connection, depending on how many
connections that executor process was already assigned versus how many
connections the other executor processes was assigned for that service.

The default for the APPLICATION_TRANSACTION_USAGE argument is SERIAL.
This is a dynamic attribute that, when changed, takes effect immediately.

Some applications, such as Microsoft Access, make multiple connections to the
same service to perform their work and require that you specify the
CONCURRENT keyword. If set to CONCURRENT, Oracle SQL/Services considers
the node, user name, and application name of the client when choosing an executor
to which to tie the connection and ensures that multiple connections from the same
client application are never assigned to the same executor process.

ALTER SERVICE Command

4-26 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

IDLE_USER_TIMEOUT <timeout-num>
Specifies the amount of time in seconds that a client (user) can remain idle before
the server disconnects the client. The <timeout-num> value is expressed as an
integer. The default value is 0, which displays as none in a SHOW SERVICE
command and means that the idle timeout value is infinite. A specified value other
than 0 is rounded to the next higher multiple of 90 seconds. This is a dynamic
attribute that, when changed, takes effect immediately.

IDLE_EXECUTOR_TIMEOUT <timeout>
Specifies the amount of time in seconds that an executor process for a session
reusable service can remain inactive (not bound to a client connection) before being
deleted. The value is expressed as an integer. The default timeout value is 1800
seconds (30 minutes). This is a dynamic attribute that, when changed, takes effect
immediately.

MIN_EXECUTORS <min>
Sets the minimum value to which the number of executor processes is allowed to
decrease. This is also the number of executor processes started at startup using a
START SERVICE or START SERVER command. The value is expressed as an integer.
The default minimum number of executors for a session reusable service is 0. A
service with MIN_EXECUTORS set to 0 will never show the Starting state when the
service starts up. The state will either display as Running or Failed. This is a
dynamic attribute that, when changed, takes effect immediately.

If you use transaction reusable executors, you must set the value for the minimum
number of executors so that it is equal to the value for the maximum number of
executors. The default value is 1 for a transaction reusable service.

MAX_EXECUTORS <max>
Sets the maximum value to which the number of executor processes is allowed to
increase. The value is expressed as an integer. The default maximum number of
executors is 1. This is a dynamic attribute that, when changed, takes effect
immediately.

If you use transaction reusable executors, you must set the value for the minimum
number of executors so that it is equal to the value for the maximum number of
executors. The default value is 1 for a transaction reusable service.

CLIENTS_PER_EXECUTOR <clients-per-executor>
Specifies the number of clients allowed per executor. The number of clients allowed
is dependent upon whether the service is session reusable or transaction reusable.
The default number of clients per executor for session reusability is 1 and cannot be
greater than 1. The default number of clients per executor for transaction reusability

ALTER SERVICE Command

Management Commands 4-27

is 1 but can be greater than 1. The CLIENTS_PER_EXECUTOR value is expressed as
an integer. This is a dynamic attribute that, when changed, takes effect immediately.

Usage Notes
■ When a service is created, only a privileged user with SYSPRV privilege is

authorized to use the service.

■ Values specified for parameters in an ALTER SERVICE command replace values
defined in the configuration file and in the running server. However, changes to
the running server are not immediate and are as described in the following
items:

– If the value for the minimum number of executors for a session reusable
service is decreased, the actual number of executor processes does not
decrease until individual executors time out using their current timeout
settings.

– If the value for the minimum number of executors for a transaction reusable
service is decreased, the actual number of executor processes does not
decrease until the service is shut down and started again.

– If the value for the maximum number of executors is increased, newly
created executor processes succeed where they might have previously
reached the limit.

– If the value for the minimum number of executors is increased, new
executors are created until the new minimum number of executors is active.

– If the value for the idle executor timeout parameter is changed, the new idle
timeout value is used beginning with the next timeout cycle of a given
executor.

Examples
Example 1: Alter a transaction reusable database service online to increase the
number of clients per executor to 20 and raise the minimum and maximum number
of executors to 10. Because these attributes are dynamic attributes, the service need
not be shut down and started up again.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVICE database4
_SQLSRV> MIN_EXECUTORS 10
_SQLSRV> MAX_EXECUTORS 10
_SQLSRV> CLIENTS_PER_EXECUTOR 20;

ALTER SERVICE Command

4-28 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Example 2: Alter a service online to change the SQL_INIT_FILE attribute. Because
this attribute is not a dynamic attribute, the service must be shut down and started
up again for the change to take effect.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVICE database4
_SQLSRV> SQL_INIT_FILE ’sql710’;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take affect
SQLSRV> SHUTDOWN SERVICE database4;
SQLSRV> START SERVICE database4;

CLOSE Command

Management Commands 4-29

CLOSE Command

Closes an output file in the SQLSRV_MANAGE environment.

Format

Usage Notes
Upon closing an output file, output is directed to standard output.

Examples
Example 1: Close an output file.

SQLSRV> CLOSE;

CLOSE;

CONNECT TO SERVER Command

4-30 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

CONNECT TO SERVER Command

Connects to a server online so that you can begin managing it.

Format

Arguments

<connect-name>
The connection name. The identifier that uniquely identifies the connection to a
server on a particular node. The connection name is most useful when connecting to
more than one server at a time. If you are going to manage only one server, a
connection name is not needed. Whenever you create a new connection, it becomes
the current connection. To switch to a server that you want to manage among those

CONNECT [TO] SERVER [AS <connect-name>]

–>[USER <user-name> USING <password>]

–>[NODE <node-name>]

–>[<network-port-spec>];

<connect-name> ::=<identifier>

<user-name> ::={ <quoted-string> | <identifier> }

<password> ::={ <quoted-string> | <identifier> }

<node-name> ::={ <quoted-string> | <identifier> }

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [<tcpip-port-spec>]

<tcpip-port-spec> ::=PORT_ID <tcpip-port-num>

<tcpip-port-num> ::=<number>

<decnet-spec> ::=DECNET [<decnet-object-spec>]

<decnet-object-spec> ::=[OBJECT { <number> | <identifier>

 | <quoted-string> }]

CONNECT TO SERVER Command

Management Commands 4-31

that you are connected to, use the SET CONNECTION command and specify the
connection name of the server.

The connection name is expressed as an identifier.

USER <user-name> USING <password>
Specifies the user name and password of an account that is authorized to manage
the server. The user name and password are expressed as either a quoted string or
an identifier.

If you are using DECnet or TCP/IP with sufficient privileges to manage a server on
the local node, you do not need to enter a user name and password when
connecting to the server on a local node. See the Usage Notes for more information
on connecting to a server on a local node without specifying a user name and
password.

NODE <node-name>
The local host name. By default the node name is the local host name. The
node-name is expressed as a quoted string or identifier.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services management clients (SQLSRV_MANAGE and the Oracle
SQL/Services Manager GUI). The <network-port-spec> argument is TCPIP or
DECNET. The network port specification defaults to TCP/IP with a default port ID
of 2199. The default DECnet object is named SQLSRV_SERVER.

Usage Notes
■ You must either connect to a server before you can begin managing it online or

select the configuration file of the server (SET CONFIG_FILE command) to
manage it offline.

■ When you establish a new connection to a server using the CONNECT TO
SERVER command, the new connection becomes the current connection. All
subsequent online system management commands operate on the current
connection. Use the SET CONNECT command to switch between connections
to multiple servers. Use the DISCONNECT command to disconnect from a
server.

■ A local user can connect to a server using DECnet without specifying a user
name or password. You must have either the SYSPRV or BYPASS privilege to
omit the user name and password when connecting to a server using TCP/IP.

CONNECT TO SERVER Command

4-32 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ If you are connecting to a local server using the configuration file you currently
have open, SQLSRV_MANAGE attempts to connect to any network port
defined for the server. It tries each network port in a round-robin fashion up to
three times each to establish a management connection. The network port used
for the management connection is the first one that is successful.

In a server environment in which multiple servers are running on one or more
nodes, you can choose either to manage each server singly as previously
mentioned, by connecting to it, performing management tasks, and
disconnecting from it, in that sequence, or you can connect to multiple servers
at the same time. In the latter case, you must specify a connection name for each
server connection and the last connection becomes the current connection. To
switch to a server that you wish to manage among those that you are connected
to, use the SET CONNECTION command and specify the server’s connection
name. All subsequent server management commands are performed on that
(the current) server.

Examples
Example 1: Connect to a server on the local node as a privileged local user using
TCP/IP.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

Example 2: Connect to a server (user name and password are quoted strings).

SQLSRV> CONNECT SERVER USER ’system’ USING ’password’;
Connecting to server ...
Connected

CREATE DISPATCHER Command

Management Commands 4-33

CREATE DISPATCHER Command

Creates a dispatcher object definition for the current server. The definition is stored
in the configuration file. New dispatcher objects must be started online to be part of
a running server. Each dispatcher defined must be listening on a unique set of
network ports or objects.

Format

CREATE DISPATCHER <disp-name>

–>[AUTOSTART { ON | OFF }]

–>[MAX_CONNECTIONS <conn-num>]

–>[IDLE_USER_TIMEOUT <timeout-num>]

–>[MAX_CLIENT_BUFFER_SIZE <buf-num>]

–>[<network-port-spec>] ... ;

<disp-name> ::=<identifier>

<conn-num> ::=<number>

<timeout-num> ::=<number>

<buf-num> ::=<number>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

 PROTOCOL <message-protocol>

<transport-spec> ::={ <tcp-spec> | <decnet-spec>

 | <ipxspx-spec> | sqlnet-spec> }

<tcp-spec> ::=TCPIP [<tcpip-port-spec>]

<tcpip-port-spec> ::=PORT_ID <tcpip-port-num>

<tcpip-port-num> ::=<number>

<decnet-spec> ::=DECNET [<decnet-object-spec>]

<decnet-object-spec> ::=[OBJECT { <number> | <identifier>

 | <quoted-string> }]

CREATE DISPATCHER Command

4-34 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Arguments

<disp-name>
The dispatcher name. The dispatcher name is expressed as an identifier. The
dispatcher name must be unique.

AUTOSTART {ON | OFF}
Determines whether or not the dispatcher object automatically starts up when you
issue a RESTART SERVER command. If the argument is specified as ON, the
dispatcher object automatically starts when you issue a RESTART SERVER
command. The default is ON.

MAX_CONNECTIONS <conn-num>
Specifies the maximum number of network connections from clients that the
dispatcher will accept. The maximum number of connections is expressed as an
integer. The default is 100. There is no upper limit other than the operating system
configuration, the network configuration, and shared server memory.

IDLE_USER_TIMEOUT <timeout-num>
Specifies the amount of time in seconds that a client (user) can remain idle before
the dispatcher disconnects the client. The <timeout-num> value is expressed as an
integer. The default value is 0, which displays as none in a SHOW DISPATCHER
command and means that the idle timeout value is infinite. A specified value other
than 0 is rounded to the next higher multiple of 90 seconds.

MAX_CLIENT_BUFFER_SIZE <buf-num>
Specifies the maximum client buffer size permitted. The maximum allowed client
buffer size is 32,000 bytes. If a client application specifies a buffer size larger than
the maximum, then the Oracle SQL/Services client API adjusts the buffer size to the
maximum size specified for the dispatcher. The default and minimum value
allowed for the MAX_CLIENT_BUFFER_SIZE attribute is 5000 bytes.

<ipxspx-spec> ::=IPXSPX [<ipxspx-port-spec>]

<ipxspx-port-spec> ::=PORT_ID <ipxspx-port-num>

<ipxspx-port-num> ::=<number>

<sqlnet-spec> ::=SQLNET <sqlnet-port-spec>

<sqlnet-port-spec> ::=LISTENER_NAME <listener-name>

<listener-name> ::={ <identifier> | <quoted-string> }

<message-protocol> ::={ NATIVE | OCI | SQLSERVICES }

CREATE DISPATCHER Command

Management Commands 4-35

<network-port-spec>
Lists network ports that the dispatcher should use for communications with Oracle
SQL/Services clients, Oracle ODBC Driver for Rdb clients, and OCI clients. The
network port specification is any one or any combination of the following: TCP/IP,
DECnet, IPX/SPX, and SQL*Net. The default port ID for TCP/IP is 118, the default
DECnet object is 81, and the default port ID for IPX/SPX is 33969 (0x84b1). If no
network port is specified, the dispatcher uses the default ports. The
<network-port-spec> argument can be repeated to include multiple SQL*Net
Listener Names. The maximum number of times that the <network-port-spec>
argument can be specified in the CREATE DISPATCHER command is 5.

Also determines the message protocol that each dispatcher network port can
support. A dispatcher network port can support only one message protocol. Specify
a message protocol that matches the type of client you want a dispatcher network
port to support:

■ NATIVE

Oracle RMU clients (Rdb Performance Monitor, RMUwin, Parallel Backup
Monitor, Backup Manager, Instance Manager, Storage Manager, SQL
Worksheet)

■ OCI

Oracle clients using the Oracle Call Interface (OCI) (Oracle Enterprise Manager
clients)

■ SQLSERVICES

Oracle SQL/Services clients (Query Performance Tuner, Oracle ODBC Driver
for Rdb, Oracle SQL/Services, Schema Manager)

Note: Ensure that you have a dispatcher network port defined
with a dispatcher message protocol that supports each service API
protocol you want to use. For example, if you define a service that
supports the OCI API protocol and another service that supports
the SQLSERVICES API protocol, you must define at least one
dispatcher network port that supports the OCI dispatcher message
protocol and the SQL*Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

CREATE DISPATCHER Command

4-36 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Usage Notes
■ To use the SQL*Net transport option, specify the SQL*Net transport option as

<sqlnet-spec> in the <transport-spec> argument and specify the SQL*Net
Listener Name as its <identifier> argument.

■ The word LISTENER is a synonym for the keyword LISTENER_NAME.

■ SQLSRV_MANAGE lets you create two or more dispatchers listening on the
same port ID or object, but only the first dispatcher with a unique port ID or
object is allowed to start. If you attempt to start a second dispatcher listening on
the same port ID or object, it fails to start if it cannot listen on any of the
specified network ports.

Examples
Example 1: Create a dispatcher that uses the TCP/IP protocol.

SQLSRV> CREATE DISPATCHER tcpip_disp NETWORK_PORT TCPIP;
SQLSRV> START DISPATCHER tcpip_disp;

Example 2: Create a dispatcher that uses the SQL*Net protocol.

SQLSRV> CREATE DISPATCHER sqlnet_disp
_SQLSRV> NETWORK_PORT SQLNET LISTENER_NAME LISTENER;
SQLSRV> START DISPATCHER sqlnet_disp;

CREATE SERVER Command

Management Commands 4-37

CREATE SERVER Command

Creates the server object definition and the configuration file. The definition is
stored in the configuration file. The new server must be started offline.

Format

Arguments

MAX_SHARED_MEMORY_SIZE <mem-size>
Sets the size in kilobytes of the maximum shared memory that the server should
use. The <mem-size> argument is a number. The default is 2000 kilobytes (2
megabytes). The Oracle SQL/Services V7.0 and higher server allocates the

CREATE SERVER

–>[MAX_SHARED_MEMORY_SIZE <mem-size>]

–>[PROCESS_STARTUP_TIMEOUT <process-startup-timeout>]

–>[PROCESS_SHUTDOWN_TIMEOUT <process-shutdown-timeout>]

–>[<network-port-spec>] ... ;

<mem-size> ::=<number>

<process-startup-timeout> ::=<number>

<process-shutdown-timeout> ::=<number>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [<tcpip-port-spec>]

<tcpip-port-spec> ::=PORT_ID <tcpip-port-num>

<tcpip-port-num> ::=<number>

<decnet-spec> ::=DECNET [<decnet-object-spec>]

<decnet-object-spec> ::=[OBJECT

 { <number> | <identifier> | <quoted-string> }]

CREATE SERVER Command

4-38 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

maximum shared memory size when the monitor starts up. The practical upper
limit is dependent on the amount of disk space available.

PROCESS_STARTUP_TIMEOUT <process-startup-timeout>
Specifies the length of time to wait before deciding that a dispatcher or executor
process is not going to start up before the monitor takes action and terminates the
process. The <process-startup-timeout> argument is a number expressed in
seconds. The default value is 0 seconds, which means that no process startup timer
value is set. See the Usage Notes for more information.

PROCESS_SHUTDOWN_TIMEOUT <process-shutdown-timeout>
Specifies the length of time to wait before deciding that a dispatcher or executor
process is not going to shut down before the monitor takes action and terminates
the process. The <process-shutdown-timeout> argument is a number expressed in
seconds. The default value is 0 seconds, which means that no process shutdown
timer value is set; the process shutdown timer value is infinite. See the Usage Notes
for more information.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services management clients (SQLSRV_MANAGE and the Oracle
SQL/Services Manager GUI). The network port specification is TCP/IP or DECnet.
The default port ID for TCP/IP is 2199 and the default DECnet object name is
SQLSRV_SERVER. If no network ports are specified, the monitor of the server uses
the default ports. The maximum number of times that the <network-port-spec>
argument can be specified in the CREATE SERVER command is 5.

DECnet or TCP/IP must be available on the node for which the create server
definition is defined. If none of these are available, the server will not start.

Usage Notes
■ The CREATE SERVER command is typically used only during an Oracle

SQL/Services installation. The installation procedure uses the SQLSRV_
CREATE71.COM procedure to create a configuration file containing a server
and a default set of dispatchers and services, and to start the server.

If you accidentally delete the configuration file or if the file becomes corrupted,
you need to re-create the server if you do not have a backup. First, delete the
original configuration file if it still exists. However, be sure to retain a copy of
the file if it was corrupted by an Oracle SQL/Services component, so you can
submit it with a software problem report. See Section 3.6 for information on
how to report a software problem. There are two ways to re-create the server.

CREATE SERVER Command

Management Commands 4-39

– Run the SQLSRV_CREATE71.COM procedure.

Execute the SYS$MANAGER:SQLSRV_CREATE71.COM command
procedure, which re-creates the server using the SYS$MANAGER:SQLSRV_
CREATE71.SQS SQLSRV_MANAGE script.

– Issue the SET CONFIG_FILE command and specify a configuration file
specification that does not exist. When you do this, you are prompted if you
want to create one now; answer YES. The default is NO. If the SET
CONFIRM command is set to OFF, then you are not prompted. A SHOW
SETTINGS command displays the current settings and the file specification
for this new configuration file. Issue a CREATE SERVER command to create
a server using this configuration file.

■ If the configuration file already exists and you issue a CREATE SERVER
command, an error message displays and the CREATE SERVER command fails.

■ The SQLSRV_MANAGE utility attempts to connect to the monitor of the server
using the default TCP/IP or DECnet ports. If you change the network port of
the server, you must also specify that port explicitly when connecting from the
SQLSRV_MANAGE utility.

■ If you want to set process startup and shutdown timers, follow these
guidelines:

– Usually dispatcher and executor processes start up and shut down in a
reasonable period of time. Only during an unusual situation would you
need to specify nonzero values for the PROCESS_STARTUP_TIMEOUT and
PROCESS_SHUTDOWN_TIMEOUT arguments.

– In heavily loaded systems, it often takes longer for a particular operation to
complete. If either process startup or process shutdown is set to a value
other than zero and fails for no apparent reason (you have checked other
possible causes and have not isolated the problem), set a higher value for
the PROCESS_STARTUP_TIMEOUT argument or the PROCESS_
SHUTDOWN_TIMEOUT argument to see if that solves the problem.

Note: This is the recommended method of re-creating a server and
is the only supported method of re-creating the Oracle RMU
dispatcher and Oracle RMU service objects.

CREATE SERVER Command

4-40 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Examples
Example 1: Create a server definition for a local node on which there is currently no
Oracle SQL/Services server.

SQLSRV> SET CONFIG_FILE ’my_config_file’;
SQLSRV> CREATE SERVER MAX_SHARED_MEMORY_SIZE 3000;
SQLSRV> START SERVER;
Server started
Connecting to server ...
Connected

CREATE SERVICE Command

Management Commands 4-41

CREATE SERVICE Command

Creates a service object definition for the current server only. The definition is
stored in the configuration file. New service objects must be started online to be part
of a running server.

Format

CREATE SERVICE <service-name>

–>[PROTOCOL { OCI | RMU | SQLSERVICES }]

–>[AUTOSTART { ON | OFF }]

–>[DEFAULT_CONNECT_USERNAME <user-string>]

–>[REUSE [SCOPE] [IS] { SESSION | TRANSACTION }]

–>[SQL_VERSION { <ver-num> | S[TANDARD] }]

–>[PROCESS_INITIALIZATION { <proc-init-file-string> | LOGIN }]

–>[ATTACH <attach-string>]

–>[OWNER <user-string>]

–>[SCHEMA <schema-string>]

–>[SQL_INIT_FILE <sql-init-file-string>]

–>[DATABASE_AUTHORIZATION { [SERVICE] OWNER

 | [CONNECT] USERNAME }]

–>[APPLICATION_TRANSACTION_USAGE

 { SERIAL | CONCURRENT }]

–>[IDLE_USER_TIMEOUT <timeout-num>]

–>[IDLE_EXECUTOR_TIMEOUT <timeout>]

–>[MIN_EXECUTORS <min>]

–>[MAX_EXECUTORS <max>]

–>[CLIENTS_PER_EXECUTOR <clients-per-executor>] ;

<service-name> ::=<identifier>

CREATE SERVICE Command

4-42 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Arguments

<service-name>
The service name. The service name is expressed as an identifier. The service name
must be unique.

PROTOCOL {OCI | RMU | SQLSERVICES}
Determines the application programming interface (API) protocol that each service
can support. A service can support only one API protocol. Specify an API protocol
that matches the type of client you want a service to support:

■ OCI

Oracle clients using the Oracle Call Interface (OCI) (Oracle Enterprise Manager
clients)

■ RMU

Oracle RMU clients (Rdb Performance Monitor, RMUwin, Parallel Backup
Monitor, Backup Manager, Instance Manager, Storage Manager, SQL
Worksheet)

■ SQLSERVICES

<user-string> ::={ <quoted-string> | <identifier> }

<ver-num> ::=<version-data-type>

<proc-init-file-string> ::=<quoted-string>

<attach-string> ::=<quoted-string>

<schema-string> ::=<quoted-string>

<locale-string> ::=<quoted-string>

<rc-file-string> ::=<quoted-string>

<sql-init-file-string> ::=<quoted-string>

<timeout-num> ::=<number>

<timeout> ::=<number>

<min> ::=<number>

<max> ::=<number>

<clients-per-executor> ::=<number>

CREATE SERVICE Command

Management Commands 4-43

Oracle SQL/Services clients (Query Performance Tuner, Oracle ODBC Driver
for Rdb, Oracle SQL/Services, Schema Manager)

AUTOSTART {ON | OFF}
Determines whether or not the service object automatically starts up when you
issue a RESTART SERVER command. If the argument is specified as ON, the service
object automatically starts when you issue a START SERVER or RESTART SERVER
command. The default is ON.

DEFAULT_CONNECT_USERNAME <user-string>
The <user-string> argument is either a quoted string or an identifier containing the
user name under which unknown users are allowed to connect to the service. See
Section 2.7 and Section 2.8 for more information about using this argument.

REUSE SCOPE IS {SESSION | TRANSACTION}
■ SESSION

An executor for a session reusable service processes requests for one client
session at a time. A session begins when a client connects to the service and the
connection is bound to an executor process. A session ends when a client
disconnects from the service and the connection is unbound from the executor
process.

■ TRANSACTION

An executor for a transaction reusable service processes requests for one
transaction at a time; however, it supports many concurrent client sessions. A
transaction begins when a client issues an SQL statement that either implicitly
or explicitly starts a transaction. A transaction ends when a client issues a
successful SQL COMMIT or ROLLBACK statement. The REUSE SCOPE IS
TRANSACTION argument can be applied only to database services.

Note: Ensure that you have a dispatcher network port defined
with a dispatcher message protocol that supports each service API
protocol you want to use. For example, if you define a service that
supports the OCI API protocol and another service that supports
the SQLSERVICES API protocol, you must define at least one
dispatcher network port that supports the OCI dispatcher message
protocol and the SQL*Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

CREATE SERVICE Command

4-44 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

See Section 2.6 for more information.

SQL_VERSION {<ver-num> | STANDARD}
Specifies the version of SQL to use for that service. It is expressed as either a version
number data type (for example, 7.1) for selecting a version of SQL in an Oracle Rdb
multiversion environment or by the keyword STANDARD (or S) for running a
standard version of SQL in an Oracle Rdb single version environment. Either value
is used as the first parameter argument for the Oracle Rdb RDB$SETVER command
procedure when it runs, as described in the installation information. The version
number resolves to an "n.n" or "s" parameter argument and the word STANDARD
or S resolves to an S parameter argument. When no value is specified, the default is
to use the keyword STANDARD.

PROCESS_INITIALIZATION {<proc-init-file-string> | LOGIN}
The process initialization file can be either a special process initialization file
specified as a <quoted-string> or the keyword LOGIN, which resolves to the default
login in the user authorization file (UAF). The process initialization or login file is
used to help define some of the attributes of the executor process for this service. If
no argument is specified, the default is not to run any initialization file.

ATTACH <attach-string>
The SQL ATTACH statement.

If you do not specify an SQL ATTACH statement, you create a universal service that
is not preattached to a specific database.

If you do specify an SQL ATTACH statement, you create a database service that is
preattached to the specified database.

The <attach-string> argument is a single-quoted string and is exactly the same
format as the attach-string-literal used in dynamic SQL.

See the Oracle Rdb7 SQL Reference Manual for more information on the ATTACH
statement.

OWNER <user-string>
Specifies the user name of the owner of the service. Every service has an owner user
name. The user name must be specified; otherwise, an error message is returned.

If the service is a database service, then the service owner’s user name privileges are
used for access checks when an executor attaches to the specified database. See
Section 2.6 for more information on database services.

If database access authorization is by service owner, then the service owner user
name privileges are used for all database access operations. See the DATABASE_

CREATE SERVICE Command

Management Commands 4-45

AUTHORIZATION argument for more information on database access
authorization.

Executors are created with the privileges and quotas from the service owner’s
account. See Section 2.9.1 for more information.

The <user-string> is a quoted string or an identifier.

SCHEMA <schema-string>
Provides a way to specify the default schema that you want to use when an
executor attaches to a multischema database. The default schema name is set (for all
service types) as shown in Table 4–4.

The schema argument allows the default to be overridden. The <schema-string>
argument is a quoted string.

SQL_INIT_FILE <sql-init-file-string>
Specifies a file containing SQL statements that tailor the SQL environment for a
client connection. For example, you can set the SQL dialect and default character set
by using an SQL initialization file. The statements in an SQL initialization file are
executed every time a client connects to a service.

The <sql-init-file-string> argument is a quoted string. See Section 4.1 for more
information about using an SQL initialization file.

DATABASE_AUTHORIZATION {[SERVICE] OWNER | [CONNECT] USERNAME}
Determines the user name under which access to the database is made. The default
is CONNECT USERNAME.

■ SERVICE OWNER

For a database service, access to the database is made by using the service
owner user name.

Table 4–4 Default Schema Name Used When an Executor Is Bound to a Multischema
Database

Schema Name
Specified in
Service Definition

Database Access
Authorization

Default Schema Name Set by
Using

Yes Service owner
Connect user name

Name specified in service definition
Name specified in service definition

No Service owner
Connect user name

Service owner account name
Connect user name (see
Section 2.12)

CREATE SERVICE Command

4-46 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ CONNECT USERNAME

Access to the database is made by using the client-specified user name, the
DECnet proxy user name, or the user name specified in the DEFAULT_
CONNECT_USERNAME argument.

For more information on database access authorization, see Section 2.7 and
Section 2.8.

APPLICATION_TRANSACTION_USAGE {SERIAL | CONCURRENT}
The APPLICATION_TRANSACTION_USAGE argument is applicable only to
transaction reusable database services. Some applications make only a single
connection to a service to perform their work, while other applications make
multiple connections to the same service. Connections created to transaction
reusable database services are tied to the same executor for the life of the session.

If a client application makes multiple connections to a service and these are
assigned to the same executor, a deadlock occurs if the client application attempts to
start a new transaction on one connection before ending an existing transaction on
another connection. When you specify the CONCURRENT keyword, Oracle
SQL/Services ensures that multiple connections from the same client application on
the same node are never assigned to the same executor process.

When you specify the SERIAL keyword, Oracle SQL/Services assumes that client
applications do not start concurrent transactions on multiple connections. Oracle
SQL/Services assigns connections to executor processes on a least busy basis (the
executor process with the fewest client connections already assigned). Thus, if a
client application made more than one connection to the same service and the
keyword SERIAL was specified, the second connection may or may not have gone
to the same executor process as the first connection, depending on how many
connections that executor process was already assigned versus how many
connections the other executor processes was assigned for that service.

The default for the APPLICATION_TRANSACTION_USAGE argument is SERIAL.

Some applications, such as Microsoft Access, make multiple connections to the
same service to perform their work and require that you specify the
CONCURRENT keyword. If set to CONCURRENT, Oracle SQL/Services considers
the node, user name, and application name of the client when choosing an executor
to which to tie the connection and ensures that multiple connections from the same
client application are never assigned to the same executor process.

IDLE_USER_TIMEOUT <timeout-num>
Specifies the amount of specified time in seconds that a client (user) can remain idle
before the server disconnects the client. The <timeout-num> value is expressed as

CREATE SERVICE Command

Management Commands 4-47

an integer. The default value is 0, which displays as none in a SHOW SERVICE
command and means that the idle timeout value is infinite. A specified value other
than 0 is rounded to the next higher multiple of 90 seconds.

IDLE_EXECUTOR_TIMEOUT <timeout>
Specifies the amount of time in seconds that an executor process for a session
reusable service can remain inactive (not bound to a client connect) before being
deleted. The value is expressed as an integer. The default timeout value is 1800
seconds (30 minutes).

MIN_EXECUTORS <min>
Sets the minimum value to which the number of executor processes is allowed to
decrease. This is also the number of executor processes started at startup using a
START SERVICE or START SERVER command. The value is expressed as an integer.
The default minimum number of executors for a session reusable service is 0. A
service with MIN_EXECUTORS set to 0 never shows the Starting state when the
service starts up. The state displays as either Running or Failed.

If you use transaction reusable executors, you must set the value for the minimum
number of executors so that it is equal to the value for the maximum number of
executors. The default value is 1 for a transaction reusable service.

MAX_EXECUTORS <max>
Sets the maximum value to which the number of executor processes is allowed to
increase. The value is expressed as an integer. The default maximum number of
executors is 1.

If you use transaction reusable executors, you must set the value for the minimum
number of executors so that it is equal to the value for the maximum number of
executors. The default value is 1 for a transaction reusable service.

CLIENTS_PER_EXECUTOR <clients-per-executor>
Specifies the number of clients allowed per executor. The number of clients allowed
is dependent upon whether the service is session reusable or transaction reusable.
The default number of clients per executor for session reusability is 1 and cannot be
greater than 1. The default number of clients per executor for transaction reusability
is 1 but can be greater than 1. The CLIENTS_PER_EXECUTOR value is expressed as
an integer.

Usage Notes
■ When a service is created, only a privileged user with SYSPRV privilege is

authorized to use the service.

CREATE SERVICE Command

4-48 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ If you use the default minimum number of 0 executors, the default maximum
number of executors is 1. If the minimum number of executors defined is
greater than 0, the default maximum number of executors equals the defined
minimum value. For example, if the defined minimum number of executors is
5, the default maximum number of executors is also 5.

Examples
Example 1: Create a universal service named V71.

SQLSRV> CREATE SERVICE V71 OWNER ’SQLSRV$DEFLT’ SQL VERSION 7.1
_SQLSRV> MIN_EXECUTORS 5
_SQLSRV> MAX_EXECUTORS 10;
SQLSRV> START SERVICE V71;

DISCONNECT SERVER Command

Management Commands 4-49

DISCONNECT SERVER Command

Disconnects from a connection to a server.

Format

Arguments

<connect-name>
The connection name. This identifier uniquely identifies the connection to a server
on a particular node. The connection name is expressed as an identifier.

Usage Notes
The DISCONNECT SERVER command works in the opposite way as the
CONNECT TO SERVER command. It disconnects the named connection if a
connection name is specified or disconnects the current connection if no connection
name is specified.

Examples
Example 1: Disconnect from the server whose connection name is eagle.

SQLSRV> CONNECT TO SERVER AS eagle;
Connecting to server ...
Connected
SQLSRV> DISCONNECT SERVER eagle;

DISCONNECT SERVER [<connect-name>] ;

<connect-name> ::=<identifier>

DROP Command

4-50 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

DROP Command

Deletes the specified object for the current server.

Format

Arguments

<obj-type>
Specifies dispatcher or service using the keyword DISPATCHER or SERVICE object
type, respectively.

<obj-name>
The name of the object to be deleted. The object name is expressed as an identifier.

Usage Notes
■ For online deletions, the object to be deleted cannot be currently active or

running; that is, the object must first be shut down online. You may want to
issue a SHOW CLIENTS command to determine if there are any client
applications using the service you are going to shut down and delete and to
ensure that no clients are connected to a service using a network transport
provided by the dispatcher that you are going to shut down and delete.

■ The SQLSRV_MANAGE utility does not prevent you from deleting a dispatcher
or service object online while the dispatcher or service is running on a different
node in an environment where two or more nodes share the same configuration
file. If this happens, then the SQLSRV_MANAGE utility displays a warning
message if you show the dispatcher or service that has been deleted but is still
running. For example, if you delete a service, the following message displays
for the deleted service when you issue a SHOW SERVICE command.

DROP <obj-type><obj-name>;

<obj-type> ::=DISPATCHER | SERVICE

<obj-name> ::= <identifier>

DROP Command

Management Commands 4-51

**
** This Service has been deleted from the config file. **
** It will not exist after it is shut down. **
**

■ Oracle Corporation recommends that you do not make offline modifications to
a configuration file if there is a server running that is using the same file. In this
situation, the SQLSRV_MANAGE utility, for example, does not prevent you
from deleting a dispatcher or service object offline while the dispatcher or
service is running.

A client application using a service or dispatcher that has been deleted offline,
continues to have use of that object until it disconnects from the server object.
However, once the client application disconnects from the server, it cannot
reconnect to the dispatcher or service that was deleted. Before the object that
was deleted is shut down, a SHOW command displays a message for the
deleted object as shown in the previous list item.

■ The DROP command removes the specified object from the configuration file.

■ Removing a service implicitly deletes the USE privilege descriptors granted to
users for that service.

Examples
Example 1: Delete the database_3 service object.

SQLSRV> SHUTDOWN SERVICE database_3;
SQLSRV> DROP SERVICE database_3;

Example 2: Delete the disp_tcpip dispatcher object.

SQLSRV> SHUTDOWN DISPATCHER disp_tcpip;
SQLSRV> DROP DISPATCHER disp_tcpip;

DROP SERVER Command

4-52 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

DROP SERVER Command

Deletes the current server, including the configuration file.

Format

Usage Notes
■ The server to be deleted cannot currently be active; it must first be shut down

online and then deleted offline.

■ The DROP SERVER command is an offline operation; you cannot be connected
to the server.

■ The DROP SERVER command deletes the configuration file.

Examples
Example 1: Delete the current server object.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHUTDOWN SERVER;
SQLSRV> DISCONNECT SERVER;
SQLSRV> SET CONFIG_FILE ’my_config_file’;
SQLSRV> DROP SERVER;
Configuration file will be deleted, continue? (N) y
Configuration file deleted

DROP SERVER;

EXIT Command

Management Commands 4-53

EXIT Command

Exits the SQLSRV_MANAGE environment.

Format

Usage Notes
■ You can exit the SQLSRV_MANAGE environment or utility in the following

two ways:

– Using the EXIT command

– When an end-of-file is encountered on the last input source

If you are using the SQLSRV_MANAGE utility interactively, you can enter
Ctrl/Z to exit the SQLSRV_MANAGE utility.

If you specify an input file on the command line with the –input file switch,
and the file is the last input source, and an end-of-file is reached, SQLSRV_
MANAGE exits.

■ Use of the terminating semicolon (;) is optional.

Examples
Example 1: Exit the SQLSRV_MANAGE environment.

SQLSRV> EXIT

EXIT[;]

GRANT USE ON SERVICE Command

4-54 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

GRANT USE ON SERVICE Command

Grant the USE privilege descriptor for a service to a user. You can grant USE to an
identifier and permit access to the specified service to a user who holds that specific
identifier.

Format

Arguments

<service-name-list>
Lists service names on which the GRANT USE ON SERVICE command operates.
The service name is expressed as an identifier.

<grant-element-list>
Lists grant elements on which the GRANT USE ON SERVICE command acts. A
grant list element can be the keyword PUBLIC or PRIVILEGED_USER, a list of user
names, or a list of identifier names. A PRIVILEGED_USER is defined as a user with
SYSPRV privilege (either default or granted privilege). A user name is expressed as
either a quoted string or an identifier. An identifier name is expressed as either a
quoted string or an identifier.

GRANT USE ON SERVICE <service-name-list> TO <grant-element-list> ;

<service-name-list> ::=<service-name> [, <service-name>] ...

<service-name> ::=<identifier>

<grant-element-list> ::=<grant-element> [, <grant-element>] ...

<grant-element> ::={ PUBLIC|PRIVILEGED_USER

 | [USER[S]] <user-name>

 | IDENTIFIER[S] <identifier-name>

 | GROUP[S] <group-name> }

<user-name> ::={ <quoted-string> | <identifier> }

<identifier-name> ::={ <quoted-string> | <identifier> }

<group-name> ::={ <quoted-string> | <identifier> }

GRANT USE ON SERVICE Command

Management Commands 4-55

Usage Notes
■ For V7.0 and higher, Oracle SQL/Services grants a single privilege descriptor,

USE.

■ Granting a new user the USE privilege descriptor takes effect upon the user’s
next attempt to use Oracle SQL/Services after the privilege change is complete.
For example, a new user, once granted the USE privilege descriptor, can use
Oracle SQL/Services on the next attempt.

■ If you use the keyword IDENTIFIER[S], the specified identifier is added to the
list of granted identifiers and permits a user who holds that specific identifier to
access the specified service. If the IDENTIFIER keyword is omitted, then the
specified user name is granted access to use the service.

Examples
Example 1: Grant the USE privilege descriptor for the general service to PUBLIC.

SQLSRV> GRANT USE ON SERVICE general TO PUBLIC;

Example 2: Grant the USE privilege descriptor for the database_2 service to fred and
wilma.

SQLSRV> GRANT USE ON SERVICE database_2 TO fred,wilma;

Example 3: Grant the USE privilege descriptor for the system management
SQLSRV_MANAGE service to fred and wilma.

SQLSRV> GRANT USE ON SERVICE sqlsrv_manage TO fred,wilma;

Example 4: Grant the USE privilege descriptor for the system management
SQLSRV_MANAGE service to the identifiers payroll_dba and operator.

SQLSRV> GRANT USE ON SERVICE sqlsrv_manage
_SQLSRV> TO IDENTIFIERS payroll_dba,operator;

HELP Command

4-56 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

HELP Command

Gets help on a topic within the SQLSRV_MANAGE environment.

Format

Arguments

<help-keyword>
A help keyword. The help keyword is expressed as an identifier.

Usage Notes
Use of the terminating semicolon (;) is optional.

Examples
Example 1: Get help on a topic within the SQLSRV_MANAGE environment.

SQLSRV> HELP

HELP [<help-keyword>] ... [;]

<help-keyword> ::=<identifier>

KILL EXECUTOR Command

Management Commands 4-57

KILL EXECUTOR Command

Kills the specified executor.

Format

Arguments

{PID <process-id> | <executor-name>}
The process ID or executor name. The process ID is expressed as an integer and can
be represented either in decimal or hexadecimal format. The executor name is
expressed as an identifier. To determine the executor name, perform a SHOW
CLIENTS FULL command.

Usage Notes
■ The process ID can be represented in either decimal or hexadecimal format. To

represent a process ID in hexadecimal format, precede the process ID value
with the value ’0x’ or ’0X’ (for example, 0x0000088a).

■ You can kill an executor only as an online operation; that is, you must be
connected to a running server (CONNECT TO SERVER command) to kill an
executor running on that server.

Examples
Example 1: Kill an executor by process ID (represented in hexadecimal format).

SQLSRV> KILL EXECUTOR PID 0x0000072a;

Example 2: Kill an executor by process ID (represented in decimal format).

SQLSRV> KILL EXECUTOR PID 324693;

KILL EXECUTOR { PID <process-id> | <executor-name> } ;

<process-id> ::=<number>

<executor-name> ::=<identifier>

KILL EXECUTOR Command

4-58 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

Example 3: Kill an executor by name.

SQLSRV> KILL EXECUTOR generi004000280;

OPEN Command

Management Commands 4-59

OPEN Command

Opens an output file in the SQLSRV_MANAGE environment. Subsequent output
by SQLSRV_MANAGE, including error messages, is written to this file.

Format

Arguments

<file-spec>
The output file name. The file name is expressed either as an identifier or as a
quoted string.

Usage Notes
The OPEN command creates the specified file and writes all subsequent output to
that file. If you enter the OPEN command, the OPEN command does an implicit
close of the current output file if an output file was already open.

Examples
Example 1: Open an output file.

SQLSRV> OPEN test_file;

OPEN <file-spec>;

<file-spec> ::={ <identifier> | <quoted-string> }

RESTART SERVER Command

4-60 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

RESTART SERVER Command

Restarts the current server.

Format

Arguments

AUTOSTART {ON | OFF}
Determines whether or not other server objects (dispatchers and services)
automatically start up again when you issue a RESTART SERVER command. ON is
the default. If the argument is specified as ON, other server objects automatically
restart (shut down and start again) if each object’s AUTOSTART argument value is
also set as ON. If you do not want to restart other server objects, specify the
AUTOSTART attribute value as OFF in the RESTART SERVER command. The
AUTOSTART OFF attribute setting overrides each object’s AUTOSTART attribute
setting and allows you to individually start each object after restarting just the
server object.

Usage Notes
■ You can restart a server only as an online operation; that is, you must be

connected to the server (CONNECT TO SERVER command) to restart it.

■ Use the RESTART SERVER command to restart the server. By default, all server
components (dispatchers and services) for the current server will also restart
unless these server objects have the AUTOSTART argument specified as OFF in
their definitions.

Examples
Example 1: Restart the current server.

SQLSRV> CONNECT TO SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 4000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;

RESTART SERVER [AUTOSTART { ON | OFF }] ;

RESTART SERVER Command

Management Commands 4-61

Disconnected from Server
SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

REVOKE USE ON SERVICE Command

4-62 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

REVOKE USE ON SERVICE Command

Revoke the USE privilege descriptor for a service from a user. You can revoke USE
from an identifier to remove access to the specified service by users who hold that
identifier.

Format

Arguments

<service-name-list>
Lists service names on which the REVOKE USE ON SERVICE command operates.
The service name is expressed as an identifier.

<grant-element-list>
Lists grant elements on which the REVOKE USE ON SERVICE command acts. A
grant list element can be the keyword PUBLIC or PRIVILEGED_USER, a list of user
names, or a list of identifier names. A PRIVILEGED_USER is defined as a user with
SYSPRV privilege (either default or granted privilege). A user name is expressed as
either a quoted string or an identifier. An identifier name is expressed as either a
quoted string or an identifier.

REVOKE USE ON SERVICE <service-name-list> FROM <grant-element-list> ;

<service-name-list> ::=<service-name> [,<service-name>] ...

<service-name> ::=<identifier>

<grant-element-list> ::=<grant-element> [, <grant-element>] ...

<grant-element> ::={ PUBLIC | PRIVILEGED_USER

 | [USER[S]] <user-name>

 | IDENTIFIER[S] <identifier-name>

 | GROUP[S] <group-name> }

<user-name> ::={ <quoted-string> | <identifier> }

<identifier-name> ::={ <quoted-string> | <identifier> }

<group-name> ::={ <quoted-string> | <identifier> }

REVOKE USE ON SERVICE Command

Management Commands 4-63

Usage Notes
■ For V7.0 and higher, Oracle SQL/Services revokes a single privilege descriptor,

USE.

■ Revoking the USE privilege descriptor from an existing user takes effect upon
the user’s next attempt to use Oracle SQL/Services after the privilege change is
complete. For example, a user whose USE privilege descriptor is revoked but
who is still using Oracle SQL/Services, will not be able to use Oracle
SQL/Services after disconnecting and then attempting to reconnect to the
service.

■ If you use the keyword IDENTIFIER[S], any specified identifier is removed
from the service’s list of granted identifiers. If you omit the IDENTIFIER[S]
keyword, the specified user name is removed from the service’s list of granted
user names.

If you revoke use of a service by a specific user name, that user is still able to
access the service if the user holds an identifier that has been granted use of the
service. Likewise, if you revoke use of a service by a specific identifier, a user
who holds that identifier is still able to access the service if the user’s name has
been granted use of the service.

Examples
Example 1: Remove the USE privilege descriptor for the general service from
PUBLIC.

SQLSRV> REVOKE USE ON SERVICE general FROM PUBLIC;

Example 2: Remove the USE privilege descriptor for the database_3 service from
fred and wilma.

SQLSRV> REVOKE USE ON SERVICE database_3 FROM fred,wilma;

Example 3: Remove the USE privilege descriptor for the system management
SQLSRV_MANAGE service from fred and wilma.

SQLSRV> REVOKE USE ON SERVICE sqlsrv_manage FROM fred,wilma;

Example 4: Remove the USE privilege descriptor for the system management
SQLSRV_MANAGE service from the identifier names payroll_dba and operator.

SQLSRV> REVOKE USE ON SERVICE sqlsrv_manage
_SQLSRV> FROM IDENTIFIERS payroll_dba,operator;

SET CONFIGURATION_FILE Command

4-64 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SET CONFIGURATION_FILE Command

Enables you to select a server configuration file with which to start a server or to
make server changes offline. Any subsequent management commands are written
to the configuration file only and do not affect the running server except for
GRANT USE and REVOKE USE commands and any restarted dispatchers and
services.

Format

Arguments

<file-name>
The configuration file name. The file name is not required to be a quoted string.

Usage Notes
■ CONFIG_FILE is a synonym for the keyword CONFIGURATION_FILE.

■ When the SQLSRV_MANAGE utility starts up, it establishes a default
configuration file name, as follows:

SYS$MANAGER:SQLSRV_CONFIG_FILE71.DAT

To override the default, set the SQLSRV_CONFIG_FILE71 logical name or
supply a different file name to the SET CONFIGURATION_FILE command.

■ The SHOW SETTINGS command shows the configuration file that offline
modifications act upon. The SHOW SERVER command also shows the
configuration file that online modifications act upon.

■ If you issue the SET_CONFIG_FILE command and specify a configuration file
specification that does not exist, you are prompted whether or not you want to
create one now. The default is NO. If the SET CONFIRM command is set to
OFF, then you are not prompted. A SHOW SETTINGS command displays the
current settings and file specification for this new configuration file. If you issue
a CREATE SERVER command, a server using this configuration file is created.

SET CONFIG[URATION]_FILE <file-name>;

<file-name> ::=<quoted-string>

SET CONFIGURATION_FILE Command

Management Commands 4-65

■ When you make modifications to a configuration file using the SET CONFIG_
FILE command, all changes are made offline and do not affect the running
server, except GRANT and REVOKE command changes. Changes made to a
server’s configuration file can be applied to the running server by restarting the
object changed.

Examples
Example 1: Set the configuration file.

SQLSRV> SET CONFIG_FILE ’my_config_file’;

SET CONFIRM Command

4-66 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SET CONFIRM Command

Echoes a confirmation prompt to the default output device when it is set as ON in
the SQLSRV_MANAGE environment that requires confirmation for certain
management operations.

Format

Arguments

{ON | OFF}
When confirm is set as ON, a confirmation prompt echoes to the default output
device requiring confirmation for certain management operations. When confirm is
set as OFF, a confirmation prompt no longer echoes and no longer requires
confirmation for certain management operations. ON is the default.

Usage Notes
■ If the SET CONFIRM command is set as ON (the default) and you issue an

SQLSRV_MANAGE command that in turn presents a confirmation prompt, this
prompt is displayed on the default output device. For example, if you shut
down and delete a server and then issue a SET_CONFIG_FILE command, and
specify a configuration file that does not exist, you are prompted whether or not
you want to create one now. The default is NO or not to create one now. If the
SET CONFIRM command is set as OFF, you are not prompted to confirm this
operation.

■ A SHOW SETTINGS command displays, among other things, the current
setting for the SET CONFIRM command.

Examples
Example 1: No longer echo a confirmation prompt to the default output device.

SQLSRV> SET CONFIRM OFF;

SET CONFIRM { ON | OFF } ;

SET CONNECTION Command

Management Commands 4-67

SET CONNECTION Command

Enables you to establish the specified connection as the current connection so that
you can manage that server.

Format

Arguments

<connect-name>
The name of the connection. The identifier that uniquely identifies the connection to
a server on a particular node. The connection name is expressed as an identifier.

Usage Notes
The SET CONNECT command allows you to manage multiple servers from a single
SQLSRV_MANAGE session by switching between connections to the servers you
are managing.

To manage a server online, you must first connect to the server using the
CONNECT TO SERVER command. When you establish a new connection to a
server using the CONNECT TO SERVER command, the new connection becomes
the current connection. All online system management commands operate on the
current connection. You can establish connections to multiple servers by issuing
multiple CONNECT TO SERVER commands. You then use the SET CONNECT
command to select the server that you wish to manage. Use the DISCONNECT
SERVER command to disconnect from a server, at which time one of the remaining
connections, if any, becomes the current connection.

Examples
Example 1: Manage two servers on nodes EAGLE and FALCON from node EAGLE.

SQLSRV> CONNECT SERVER AS EAGLE;
Connecting to server ...
Connected

SET CONNECT[ION] [<connect-name>] ;

<connect-name> ::=<identifier>

SET CONNECTION Command

4-68 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SQLSRV> CONNECT SERVER AS FALCON NODE FALCON
_SQLSRV> USER ’dbsmgr’ USING ’password’;
Connecting to server ...
Connected
SQLSRV> SHOW CONNECTS;
Active connections:
CURRENT: FALCON
 Service: SQLSRV_MANAGE
 User: dbsmgr Node: FALCON Local: No
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

 EAGLE
 Service: SQLSRV_MANAGE
 User: <unknown> Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
RMU_SERVICE RUNNING 1 100 0 4 100 4
GENERIC RUNNING 1 10 0 2 10 2
SQLSRV_MANAGE RUNNING 100 0 1 0 0 0

SQLSRV> SET CONNECT EAGLE;
SQLSRV> SHOW CONNECTS;
Active connections:
 FALCON
 Service: SQLSRV_MANAGE
 User: dbsmgr Node: FALCON Local: No
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

CURRENT: EAGLE
 Service: SQLSRV_MANAGE
 User: <unknown> Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
V61 RUNNING 1 20 2 5 20 5
RMU_SERVICE RUNNING 1 100 3 4 100 4

SET CONNECTION Command

Management Commands 4-69

GENERIC RUNNING 1 50 5 20 50 20
SQLSRV_MANAGE RUNNING 100 0 1 0 0 0

SET OUTPUT Command

4-70 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SET OUTPUT Command

Directs output to the default device if set as ON in the SQLSRV_MANAGE
environment.

Format

Arguments

{ON | OFF}
When output is set as ON it is directed to the default output device. When output is
set as OFF it is no longer directed to the default output device but is directed to the
current device, which is the terminal.

Usage Notes
None.

Examples
Example 1: Set the output to the default device.

SQLSRV> SET OUTPUT ON;

SET OUTPUT { ON | OFF } ;

SET VERIFY Command

Management Commands 4-71

SET VERIFY Command

Echoes command file input to the default output device as it is read in the SQLSRV_
MANAGE environment.

Format

Arguments

{ON | OFF}
When verify is set as ON, command file input echoes to the default output device.
When verify is set as OFF, command file input no longer echoes to the default
output device.

Usage Notes
None.

Examples
Example 1: Echo command file input to the default output device as it is read.

SQLSRV> SET VERIFY ON;

SET VERIFY { ON | OFF } ;

SHOW CLIENTS Command

4-72 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SHOW CLIENTS Command

Shows the active users for services for a configuration.

Format

Arguments

<name-spec>
The name specification. You can show:

■ The clients connected to one or more services

■ All clients connected to a server using a specific user name or list of user names

■ Clients connected to a particular executor

<name-list>
Specifies the name list, which can be the service name list or user name list or the
executor PID; depending on the keyword specified. If two or more service names or
two or more user names are specified, each name must be separated by a comma. If
one or more service names or user names are specified, then only information for
those items is displayed.

SHOW CLIENTS [FOR] <name-spec> [FULL] ;

<name-spec> ::={ * | <name-list> }

<name-list> ::={ [SERVICE] <service-name-list>

 | [USERNAME] <user-name-list> | [PID] <executor-pid> }

<service-name-list> ::=<service-name> [, <service-name>] ...

<user-name-list> ::=<user-name> [, <user-name>] ...

<service-name> ::=<identifier>

<user-name> ::=<identifier>

<executor-pid> ::=<number>

SHOW CLIENTS Command

Management Commands 4-73

<service-name>
The service object name is expressed as an identifier.

<user-name>
The user name is expressed as an identifier.

<exec-pid>
The executor PID is expressed as a number and can be represented either in decimal
or hexadecimal format.

FULL
Displays a full description of information for each client. The default is to display
brief information (one line of output) for each client. When no service name is
specified, SQLSRV_MANAGE displays clients grouped by service name.

Usage Notes
■ If no service object is specified, then information for all service objects is

displayed.

■ To show all clients for all services, you can either use the SHOW CLIENTS
command and not specify the [FOR] [SERVICE] keywords, or specify an
asterisk (*). Either method displays all clients for all services. For example:

SQLSRV> SHOW CLIENTS;
SQLSRV> SHOW CLIENTS *;

■ To show all clients for all user names for all services, specify the SHOW
CLIENTS FOR USERNAME command and do not specify user names.

■ To show all clients for a specific executor PID, specify the SHOW CLIENTS FOR
PID command and specify the executor PID.

■ The executor PID can be represented in either decimal or hexadecimal format.
To represent an executor PID in hexadecimal format, precede the executor PID
value with the value ’0x’ or ’0X’ (for example, 0x0000088a).

■ Client connections serviced by a session reusable service can be in one of three
possible states (see Section 3.2 for more information):

– Running Binding – The client is running and in the process of binding to an
executor.

– Running Bound – The client is running and is bound to an executor.

– Canceling – The client connection is in the process of being disconnected.

SHOW CLIENTS Command

4-74 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ Client connections serviced by a transaction reusable database service can be in
one of five possible states (see Section 3.2 for more information):

– Running Binding – The client is running and in the process of binding to an
executor.

– Running Bound – The client is running and is bound to an executor.

– Running Unbound – The client is not submitting requests, therefore is not
bound to an executor, but it is still connected to its executor.

– Canceling Binding – The client is in the process of informing the executor
that the bound connect is going away (this operation precedes the
Canceling operation).

– Canceling – The client connection is in the process of being disconnected.

■ This command also shows the management clients that are using the
management service. The SHOW CLIENTS command allows server system
managers to determine if other server system managers are connected to the
server and using the management service.

■ This command shows the actual location of executor log and error files and the
location of an executor dump file should one be created.

Examples
Example 1: Show the clients for the universal service named generic and display a
brief description.

SQLSRV> SHOW CLIENTS FOR SERVICE generic;
Service: GENERIC

 Connect Client Executor
 Username Node State PID Application
 User1 123.0.0.1 RUNNING BOUND 28c0c4e6 Personnel
 User2 121.0.0.1 RUNNING BOUND 30b0a4d5 Personnel

Example 2: Show the clients for user names for all services and display a brief
description.

SQLSRV> SHOW CLIENTS;
Service: SQLSRV_MANAGE

 Connect Client Executor
 Username Node State PID Application
 User1 123.0.0.1 RUNNING BOUND 28c0c4e6 Personnel

SHOW CLIENTS Command

Management Commands 4-75

 User1 123.0.0.1 RUNNING BOUND 29d0c4c7 SQLSRV_MANAGE
 User2 121.0.0.1 RUNNING BOUND 32b0b4c3 SQLSRV_MANAGE GUI

Example 3: Show the clients for the universal service named generic and display a
full description.

SQLSRV> SHOW CLIENTS FOR SERVICE generic FULL;
Client Connect Username sqsapim1
 Service: GENERIC
 Application: Personnel
 State: RUNNING BOUND
 Node: 12.34.567.89
 Executor: GENERI0050002
 Executor PID: 543173877 0X20602cf5
 Log File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0050002.LOG
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0050002.DMP

Client Connect Username sqsapim2
 Service: GENERIC
 Application: Personnel
 State: RUNNING BOUND
 Node: LOCAL:.mypc
 Executor: GENERI0080004
 Executor PID: 543173877 0X20602cf5
 Log File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0080004.LOG
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0080004.DMP

SHOW CONNECTIONS Command

4-76 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SHOW CONNECTIONS Command

Shows information about the current server.

Format

Usage Notes
■ CONNECTS is a synonym for the keyword CONNECTIONS.

■ The SHOW CONNECTS command shows you information about all of the
active management connections that the SQLSRV_MANAGE utility has to each
server. Use the SHOW CONNECTS command first to determine the current
connection before issuing additional server management commands.

Examples
Example 1: Show information about the current server and connections to other
servers.

SQLSRV> SHOW CONNECTS;
Active connections:
CURRENT: SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: system Node: hawk Local: No
 Transport: TCP/IP Port-id: 2199
 Request bufsize: 1024 Response bufsize: 1024

 SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: system Node: falcon Local: Yes
 Transport: TCP/IP Port-id: 2199
 Request bufsize: 1024 Response bufsize: 1024

SHOW CONNECT[ION]S;

SHOW DISPATCHER Command

Management Commands 4-77

SHOW DISPATCHER Command

Shows the static definition of all dispatcher objects and their operational state for
the current server.

Format

Arguments

<dispatcher-spec>
The dispatcher object specification. This can be one or more dispatcher object names
or can be specified with an asterisk (*). If an * is specified, information for all
dispatcher object names is displayed.

<dispatcher-name-list>
The dispatcher object name list. If two or more dispatcher object names are
specified, each dispatcher object name must be separated by a comma. If one or
more dispatcher object names are specified, then only information for those named
dispatcher objects is displayed.

<dispatcher-name>
The dispatcher object name is expressed as an identifier.

Usage Notes
■ If no dispatcher object is specified, then information for all dispatcher objects is

displayed.

■ The dispatcher state and network port states can be one of three possible states:

– Running – The dispatcher or dispatcher network port is running.

– Inactive – The dispatcher or dispatcher network port is shut down.

SHOW DISPATCHER [<dispatcher-spec>] ;

<dispatcher-spec> ::={ * | <dispatcher-name-list> }

<dispatcher-name-list> ::=<dispatcher-name> [, <dispatcher-name>] ...

<dispatcher-name> ::=<identifier>

SHOW DISPATCHER Command

4-78 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

– Unknown – The management client is not connected to the server online so
it cannot determine the state of the dispatcher and its network ports. The
management client used the SET CONFIG_FILE command to manage the
server offline. Use the CONNECT TO SERVER command to connect to the
server online to determine the dispatcher state and the state of its network
ports.

■ When a difference exists for an attribute between the running server and its
configuration file, the SHOW DISPATCHER command displays this difference
at the end of the show output and indicates that when the server is restarted,
the running server's dispatcher is updated to match the server's dispatcher
definition in the configuration file.

■ This command shows the actual location of dispatcher log and error files and
the location of a dispatcher dump file should one be created. These file
specifications are for informational purposes only and are not alterable
attributes.

Examples
Example 1: Show information for the dispatcher for two different servers.

SQLSRV> CONNECT TO SERVER NODE hawk USER system USING password;
Connecting to server ...
Connected
SQLSRV> SHOW DISPATCHER sqlsrv_disp;
Dispatcher SQLSRV_DISP
 State: RUNNING
 Autostart: on
 Max connects: 100 clients
 Idle user Timeout: <none>
 Max client buffer size: 5000 bytes
 Network Ports: (State) (Protocol)
 SPX/IPX port 0x84b1 Inactive SQL/Services
 DECnet object 81 Running SQL/Services
 TCP/IP port 118 Running SQL/Services
 SQL*Net listener FUBAR Running SQL/Services
 Log File: SYS$MANAGER:SQS_EAGLE_SQLSRV_DIS100380.LOG
 Dump File: SYS$MANAGER:SQS_EAGLE_SQLSRV_DIS1003.DMP

SHOW SERVER Command

Management Commands 4-79

SHOW SERVER Command

Shows the static definition of the server object defined and its operational state.

Format

Usage Notes
■ The server network port state can be one of three possible states:

– Running – The server network port is running.

– Inactive – The server network port is shut down.

– Unknown – The management client is not connected to the server online so
it cannot determine the state of the server network ports. The management
client used the SET CONFIG_FILE command to manage the server offline.
Use the CONNECT TO SERVER command to connect to the server online
to determine the state of its network ports.

■ When a difference exists for an attribute between the running server and its
configuration file, the SHOW SERVER command displays these differences at
the end of the show output and indicates that when the server is restarted, the
running server is updated to match the server's definition in the configuration
file.

■ Shows the actual location of server log and error files and the location of the
server dump file should one be created. These file specifications are for
informational purposes only and are not alterable attributes.

Examples
Example 1: Show information for the server defined in the configuration file.

SQLSRV> SHOW SERVER;
 Server Version: 7.1
 Server Platform: Digital OpenVMS Alpha
 Max Shared Mem Size: 2000 Kb
 Config file: SYS$SYSROOT:[SYSMGR]SQLSRV_CONFIG_FILE71.DAT;1
 Log path: SYS$MANAGER:
 Dump path: SYS$MANAGER:

SHOW SERVER;

SHOW SERVER Command

4-80 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

 Proc start time: <none>
 Proc shut time: <none>
 Network Ports: (State) (Protocol)
 DECnet object SQLSRV_SERVER Running Native
 TCP/IP port 2199 Running Native
 Current shared memory usage:
 Allocation unit: 65536 bytes
 Total memory: 2031616 bytes (31 units)
 Free memory: 1769472 bytes (27 units)
 Partly allocated: 196608 bytes (3 units)
 Log File: SYS$SYSROOT:[SYSMGR]SQS_CRANES_SQLSRV_MON_0071.LOG;
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_CRANES_SQLSRV_71.DMP;

SHOW SERVICE Command

Management Commands 4-81

SHOW SERVICE Command

Shows the static definition of a service object or all service objects currently defined
in the configuration file.

Format

Arguments

<service-spec>
The service object specification. This can be one or more service object names or can
be specified with an asterisk (*). If one or more service object names are specified,
then only information for those named service objects is displayed. If an * is
specified, information for all service object names is displayed.

<service-name-list>
The service object name list. If two or more service object names are specified, each
service object name must be separated by a comma. If one or more service object
names are specified, then only information for those named service objects is
displayed.

<service-name>
The service object name is expressed as an identifier.

FULL
Displays a full description of information for each service. The default is to display
brief information (one line of output) for each service.

Usage Notes
■ SERVICES is a synonym for the keyword SERVICE.

SHOW SERVICE[S] [<service-spec>] [FULL] ;

<service-spec> ::={ * | <service-name-list> }

<service-name-list> ::=<service-name> [, <service-name>] ...

<service-name> ::=<identifier>

SHOW SERVICE Command

4-82 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

■ If no service object is specified, then information for all service object names is
displayed.

■ The SHOW SERVICE * command and the SHOW SERVICE command both
show you all of the services currently defined.

■ The service state can be one of five possible states:

– Starting – The service is starting.

A service with MIN_EXECUTORS set to 0 never shows the Starting state
when the service starts up. The state displays as either Running or Failed.

– Failed – The service failed to start.

– Running – The service is running.

– Inactive – The service is shut down.

– Unknown – The management client is not connected to the server online so
it cannot determine the state of the service. The management client used the
SET CONFIG_FILE command to manage the server offline. Use the
CONNECT TO SERVER command to connect to the server online to
determine the service state.

■ When a difference exists for an attribute between the running server and its
configuration file, the SHOW SERVICE command displays these differences at
the end of the show output and indicates that when the server is restarted, the
running server's service is updated to match the server's service definition in
the configuration file.

■ This command shows the list of user names granted access to the specified
services.

■ This command shows the list of identifiers granted access to the specified
services.

Examples
Example 1: Show the services defined for a configuration and display a brief
description.

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
SQLSRV_MANAGE UNKNOWN 100 100 1 1 1 0
GENERIC UNKNOWN 1 10 0 2 10 1
RMU_SERVICE UNKNOWN 1 100 0 0 100 0

SHOW SERVICE Command

Management Commands 4-83

Example 2: Show the services defined for a configuration and display a full
description.

SQLSRV> SHOW SERVICE payroll FULL;
Service PAYROLL
 State: RUNNING
 Owner: PAYROLLACCNT
 Protocol: SQL/Services
 Default Connect Username: <not specified>
 SQL version: 7.1
 Autostart: on
 Process init: <not specified>
 Attach: ATTACH ’FILENAME PAYROLL_DISK:PAYROLL_DB’
 Schema: <not specified>
 Reuse: SESSION
 Database Authorization: CONNECT USERNAME
 dbsrc file: <not specified>
 SQL init file: <not specified>
 Appl Transaction Usage: SERIAL
 Idle User Timeout: <none>
 Idle Exec Timeout: 1800 seconds
 Min Executors: 5
 Max Executors: 10
 Clients Per Executor: 1
 Active Clients: 0

Access to service PAYROLL
 Granted to users:
 PRIVILEGED_USER ’PAYROLLACCNT’
 Granted to identifiers:
 ’PAYROLL_DBA’ ’PAYROLLDEPT’

SHOW SETTINGS Command

4-84 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SHOW SETTINGS Command

Shows information about the current SQLSRV_MANAGE settings.

Format

Usage Notes
After starting the server, use the SHOW SETTINGS command to determine the
current settings for the SQLSRV_MANAGE environment. Modify these SQLSRV_
MANAGE environment settings for your own use.

Examples
Example 1: Show information about the current settings for the SQLSRV_MANAGE
environment.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW SETTINGS;
Settings:
 version: v7.1
 verify: off
 output: on
 config-file: SYS$SYSROOT:[SYSMGR]SQLSRV_CONFIG_FILE.DAT;1
 confirm: on

SHOW SETTINGS;

SHOW VERSION Command

Management Commands 4-85

SHOW VERSION Command

Shows the version of the SQLSRV_MANAGE management client.

Format

Usage Notes
Use the SHOW VERSION command to determine the version of the SQLSRV_
MANAGE management client.

Examples
Example 1: Show the version of the SQLSRV_MANAGE management client.

SQLSRV> SHOW VERSION;
Version: v7.1

SHOW VERSION;

SHUTDOWN DISPATCHER Command

4-86 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SHUTDOWN DISPATCHER Command

Shuts down the specified dispatcher.

Format

Arguments

<dispatcher-name>
Specifies the dispatcher object name. The dispatcher object name is expressed as an
identifier.

Usage Notes
■ Use the SHOW CLIENTS command to ensure no clients are connected to a

service using a network transport being provided by the dispatcher that you are
shutting down.

■ You can shut down a dispatcher only as an online operation; that is, you must
be connected to a running server (CONNECT TO SERVER command) to shut
down a dispatcher defined and running for that server.

■ A dispatcher that has failed to start is left in a failed state and must be shut
down. Correct the problem (usually an argument value is incorrectly specified),
then start the dispatcher again.

Examples
Example 1: Shut down the dispatcher named disp_tcpip.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CLIENTS;
SQLSRV> SHUTDOWN DISPATCHER disp_tcpip;

SHUTDOWN DISPATCHER <dispatcher-name> ;

<dispatcher-name> ::=<identifier>

SHUTDOWN SERVER Command

Management Commands 4-87

SHUTDOWN SERVER Command

Shuts down the current server.

Format

Usage Notes
■ Use the SHOW CONNECTS command to ensure that you are shutting down

the correct server.

■ You can shut down a server only as an online operation; that is, you must be
connected to a running server (CONNECT TO SERVER command) to shut it
down.

Examples
Example 1: Shut down the current server.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CONNECTS;
Active connections:
CURRENT: SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: run_username Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024
SQLSRV> SHUTDOWN SERVER;
Disconnected from Server

SHUTDOWN SERVER;

SHUTDOWN SERVICE Command

4-88 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

SHUTDOWN SERVICE Command

Shuts down the specified service.

Format

Arguments

<service-name>
Specifies the service object name. The service object name is expressed as an
identifier.

Usage Notes
■ Use the SHOW CLIENTS command to ensure that no clients are connected to

the service that you are shutting down.

■ You can shut down a service only as an online operation; that is, you must be
connected to a running server (CONNECT TO SERVER command) to shut
down a service defined and running for that server.

■ A service that has failed to start is left in a failed state and must be shut down.
Correct the problem (usually an argument value is incorrectly specified), then
start the service again.

Examples
Example 1: Shut down the universal service named generic.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHUTDOWN SERVICE generic;

SHUTDOWN SERVICE <service-name> ;

<service-name> ::=<identifier>

START DISPATCHER Command

Management Commands 4-89

START DISPATCHER Command

Starts a dispatcher process for the defined dispatcher object with the specified name
for the current server.

Format

Arguments

<disp-name>
Specifies the dispatcher name. The dispatcher name is expressed as an identifier.

Usage Notes
You can start a dispatcher only as an online operation; that is, you must be
connected to a running server (CONNECT TO SERVER command) to start a
dispatcher defined for that server.

Examples
Example 1: Start the tcpip_disp dispatcher.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> START DISPATCHER tcpip_disp;

START DISPATCHER <disp-name> ;

<disp-name> ::=<identifier>

START SERVER Command

4-90 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

START SERVER Command

Starts the current server and optionally any defined dispatcher and service objects
for the current server when AUTOSTART is set as ON and then connects to the
server after starting it when AUTOCONNECT is set as ON.

Format

Arguments

USER <user-name> USING <password>
Specifies a user name and password with which to connect to the server after the
server has started. The user name and password are expressed as either a
quoted-string or an identifier. You need not specify a user name and password if
you are starting a server running DECnet or if you are starting a server running
TCP/IP and you have SYSPRV or BYPASS privilege.

AUTOCONNECT {ON | OFF}
Determines whether or not to automatically connect to the server after you issue a
START SERVER command. If the argument is specified as ON, SQLSRV_MANAGE
automatically connects to the server after it starts the server when you issue a
START SERVER command. A value of OFF starts the server but does not attempt to
connect to the server after it has started. The default is ON.

AUTOSTART {ON | OFF}
Determines whether all other server objects (dispatchers and services) automatically
start up when you issue a START SERVER command. If the argument is specified as
ON, the default, all other server objects automatically start if each object’s
AUTOSTART argument value is also set as ON. If you do not want to start all other

START SERVER

–>[USER <user-name> USING <password>]

–>[AUTOCONNECT { ON | OFF }]

–>[AUTOSTART { ON | OFF }] ;

<user-name> ::={ <quoted-string> | <identifier> }

<password> ::={ <quoted-string> | <identifier> }

START SERVER Command

Management Commands 4-91

server objects, specify the AUTOSTART attribute value as OFF in the START
SERVER command. The AUTOSTART OFF attribute setting overrides each object’s
AUTOSTART attribute setting and allows you to individually shut down and start
each object after starting just the server object. The default is ON.

Usage Notes
■ You can start a server only as an offline operation; that is, you must use the SET

CONFIG_FILE command to select the configuration file of the server you want
to start or use the default.

■ After the server starts up with the AUTOCONNECT argument specified as ON,
SQLSRV_MANAGE attempts to connect to any network port defined for the
server. It tries each network port in a round-robin fashion up to three times each
to establish the connection.

■ You must have the SETPRV privilege or all privileges.

■ When SQLSRV_MANAGE starts up, it establishes a default configuration file
name:

– The default configuration file is:

SYS$MANAGER:SQLSRV_CONFIG_FILE71.DAT

– To override the default, set the SQLSRV_CONFIG_FILE71 logical name or
supply a different file name to the SET CONFIGURATION_FILE command.

Examples
Example 1: Start the current server.

SQLSRV> SET CONFIG_FILE ’my_config_file’;
SQLSRV> START SERVER;
Server started
Connecting to server ...
Connected

START SERVICE Command

4-92 Oracle Rdb Oracle SQL/Services Server Release 7.1.5 Configuration Guide

START SERVICE Command

Starts the specified, defined service object for the current server.

Format

Arguments

<service-name>
Specifies the service name. The service name is expressed as an identifier.

Usage Notes
You can start a service only as an online operation; that is, you must be connected to
a running server (CONNECT TO SERVER command) to start a service defined for
that server.

Examples
Example 1: Start the universal service named V71.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> START SERVICE v71;

START SERVICE <service-name> ;

<service-name> ::=<identifier>

Index-1

Index
Symbols
@

command, 4-11
indirect command file, 4-11

SQLSRV_MANAGE, 4-11

A
ALTER DISPATCHER command, 4-12
ALTER SERVER command, 4-16
ALTER SERVICE command, 4-20
Altering

dispatcher, 2-9, 4-12 to 4-15
server, 2-6, 4-16 to 4-19
service, 2-12, 4-20 to 4-28

Architecture
client/server, 1-3
server system, 1-2

Authentication of clients, 2-25
Authorization

database and data access, 2-27, 2-32
to access services, 2-26

Authorizing unknown users, 2-35, 4-22, 4-43

B
Bugcheck dump files, 3-9

C
Changes, 4-12, 4-16, 4-20
Choosing a service type, 2-24
Clients

definition, 1-1
identification and authentication, 2-25
SHOW CLIENTS command, 4-72 to 4-75
showing, 4-72 to 4-75

Clientxx.log, 3-6
CLOSE command, 4-29
Closing an output file, 4-29
Configuration

altering dispatcher, 2-9
altering server, 2-6
altering service, 2-12
copying, 2-7
creating dispatcher, 2-8
creating server, 2-4
creating service, 2-11
deleting dispatcher, 2-11
deleting server, 2-7
deleting service, 2-14
restarting dispatcher, 2-8
restarting server, 2-6
restarting service, 2-11
shutting down dispatcher, 2-8
shutting down server, 2-6
shutting down service, 2-11

Configuration file
definition, 1-5
SET CONFIG_FILE command, 4-64 to 4-65
showing, 4-84

Configuring executor processes, 2-43
Confirmation prompt

providing, 4-66
CONNECT TO SERVER command, 4-30
Connect user name, 2-40

database access authorization, 2-32, 2-33, 2-37

Index-2

default, 2-35
on OpenVMS, 2-37, 2-38, 2-40, 2-41

Connecting to server, 4-30
Connection

establishing as current, 4-67
SET CONNECTION command, 4-67
SHOW CONNECTS command, 4-76

Copying a configuration, 2-7
CREATE DISPATCHER command, 4-33
CREATE SERVER command, 4-37
CREATE SERVICE command, 4-41
Creating

dispatcher, 2-8, 4-33 to 4-36
server, 2-4, 4-37 to 4-40
service, 2-11, 4-41 to 4-48

D
Database access authorization, 2-27

connect user name, 2-32, 2-33, 2-40
on OpenVMS, 2-37, 2-38, 2-40, 2-41

service owner, 2-32, 2-34, 2-40
on OpenVMS, 2-37, 2-38, 2-40, 2-41

universal service, 2-37
Database authorization, 2-27
Database service, 2-18, 2-31, 2-35

recommendations, 2-24
session reusable, 2-21
setting database access authorization, 2-33, 2-34,

2-40
on OpenVMS, 2-38

transaction reusable, 2-22
versus universal service, 2-31

Deciding
access to a service, 2-36
access to data, 2-36
database access authorization, 2-32
default connect user name, 2-35
service type, 2-31

Default settings
dispatcher, 2-9
dispatcher objects, 2-9
server, 2-6
server objects, 2-6
service, 2-12

Deleting
dispatcher, 2-11
objects, 4-50 to 4-51
server, 2-7, 4-52
service, 2-14

Directing output, 4-70
DISCONNECT SERVER command, 4-49
Disconnecting from the server, 4-49
Dispatcher

altering, 4-12 to 4-15
attributes, 2-9
creating, 4-33 to 4-36
default settings, 2-9
definition

ALTER DISPATCHER
command, 4-12 to 4-15

CREATE DISPATCHER
command, 4-33 to 4-36

deleting, 2-11
log file, 3-8
restarting, 2-8
setting up, 2-17
SHOW DISPATCHER command, 4-77 to 4-78
SHUTDOWN DISPATCHER command, 4-86
START DISPATCHER command, 4-89
system management, 2-8
transport selection, 2-17

DROP command, 4-50
DROP SERVER command, 4-52
Dump files

See Bugcheck dump files

E
Echoing command file output, 4-71
Echoing confirmation prompt, 4-66
Environment commands, 4-1, 4-7
Environment switches, 4-1, 4-7
Error log files

dispatcher, 3-8
executor, 3-9
monitor, 3-8

Executor
definition, 1-1
kill, 4-57

Index-3

log file, 3-9
process characteristics, 2-43
process configuration, 2-43

Executor processes
configuring mechanisms, 2-43

EXIT command, 4-53
Exiting

the SQLSRV_MANAGE environment, 4-53
External functions

using, 2-39

F
Failure recovery, 3-5
Figure, 2-28
Files

bugcheck dump files, 3-9
clientxx.log, 3-6
dispatcher log file, 3-8
executor log file, 3-9
input, 4-9
log, 3-6
monitor log file, 3-8
ODBC logging, 3-7
server error message file, 3-12
SQL initialization, 2-43
winsock logging, 3-7

G
Getting started, 2-1
GRANT USE ON SERVICE command, 4-54
Granting

access to a service, 2-36
privilege, 4-54

H
HELP command, 4-56

I
Identification of clients, 2-25
Input

-input switch, 4-9

specifying an input file
SQLSRV_MANAGE, 4-9

-input switch, 4-9
Isolating problems, 3-6

check in log files, 3-9
solving server errors, 3-12

K
KILL EXECUTOR command, 4-57
Killing a specified

executor, 4-57 to 4-58

L
Log files, 3-6 to 3-9

clientxx.log, 3-6
dispatcher, 3-8
error, 3-8, 3-9
executor, 3-9
isolating problems, 3-9
monitor, 3-8

M
Management commands, 4-5
Manager Client GUI utility, 1-5, 1-7

system management, 1-7
Mechanisms

security, 2-24
used to configure executor processes, 2-43
used to set user names, 2-43

Memory
setting size, 2-14

Monitor
definition, 1-4
log file, 3-8
server activity, 3-1

O
Objects

actions on (commands), 4-5
deleting, 4-50 to 4-51
DROP command, 4-50 to 4-51

Index-4

DROP SERVER command, 4-52
ODBC logging, 3-7
Offline system management, 1-7
Online system management, 1-7
OPEN command, 4-59
Opening output file, 4-59
Operating system process user name, 2-43
Oracle Rdb

current user name, 2-46
session user name, 2-45
system user name, 2-44

Oracle SQL/Services
database service recommendations, 2-24
default schema name used, 4-24, 4-45
environment switches, 4-7
Manager Client GUI

definition, 1-5
objects

actions on (commands), 4-5
Output

file
closing, 4-29

-output switch, 4-10
SET OUTPUT command, 4-70
specifying an output file, 4-10

-output switch, 4-10

P
Planning a server, 2-2
Privilege

grant, 4-54 to 4-55
GRANT USE ON SERVICE

command, 4-54 to 4-55
needed for system management, 1-6
revoke, 4-62 to 4-63
REVOKE USE ON SERVICE

command, 4-62 to 4-63
Problems

check in log files, 3-9
isolating, 3-6
reporting for software, 3-12
solving server errors, 3-12

Providing services to clients, 2-31

R
Recovery, 3-5
Reporting software problems, 3-12
RESTART SERVER command, 4-60
Restarting

dispatcher, 2-8
server, 2-6, 4-60
service, 2-11

Restricting access to a service, 2-36
REVOKE USE ON SERVICE command, 4-62
Revoking a privilege, 4-62

S
Security

client identification and authentication, 2-25
database and data access authorization, 2-27
how the tiers work, 2-28
mechanisms, 2-24
on servers, 2-28
service access authorization, 2-26

Selecting service owner user name, 2-37
Server

altering, 4-16 to 4-19
architecture, 1-3
attributes, 2-6
CONNECT TO SERVER command, 4-30 to 4-32
connecting to, 4-30 to 4-32
creating, 4-37 to 4-40
default settings, 2-6
definition

ALTER SERVER command, 4-16 to 4-19
CREATE SERVER command, 4-37 to 4-40

deleting, 2-7, 4-52
DISCONNECT SERVER command, 4-49
disconnecting from, 4-49
management commands, 4-1
monitoring activity, 3-1
planning, 2-2
RESTART SERVER command, 4-60 to 4-61
restarting, 4-60
SET CONNECTION command, 4-67 to 4-69
SHOW SERVER command, 4-79 to 4-80
showing, 4-79 to 4-80

Index-5

SHUTDOWN SERVER command, 4-87
shutting down, 4-87
solving errors, 3-12
START SERVER command, 4-90 to 4-91
starting, 4-90 to 4-91
system, 1-2
system management, 2-4
system requirements, 2-2
ways to manage, 1-5

Service, 2-18
access

authorization, 2-26, 2-27
restricting, 2-36
to data, 2-36

altering, 4-20 to 4-28
attributes, 2-12
choosing a service type, 2-24, 2-31
creating, 4-41 to 4-48
database, 2-35
database access authorization, 2-32
default connect user name, 2-35
default settings, 2-12
definition, 1-2

ALTER SERVICE command, 4-20 to 4-28
CREATE SERVICE command, 4-41 to 4-48

deleting, 2-14
GRANT USE ON SERVICE command, 4-54
granting access, 2-36
owner, 2-40

database access authorization, 2-32, 2-34
on OpenVMS, 2-37, 2-38, 2-41

providing types of, 2-31
restarting, 2-11
session reusable database, 2-21, 2-22
session reusable universal, 2-20, 2-21
session reuse, 2-19
SHOW SERVICE command, 4-81 to 4-83
showing, 4-81 to 4-83
SHUTDOWN SERVICE command, 4-88
shutting down, 4-88
START SERVICE command, 4-92
starting, 4-92
system management, 2-11
transaction reusable database, 2-22, 2-23
transaction reuse, 2-19

universal, 2-18, 2-35
universal versus database, 2-31

Service owner
database access authorization, 2-32, 2-34, 2-37

Service owner user name
selecting, 2-37

Session reusable database service, 2-21
Session reusable universal service, 2-20
Session reuse service, 2-19
SET CONFIG_FILE command, 4-64
SET CONFIRM command, 4-66
SET CONNECTION command, 4-67
SET OUTPUT command, 4-70
SET VERIFY command, 4-71
Setting

configuration file, 4-64, 4-64 to 4-65
confirm, 4-66
connection, 4-67 to 4-69
IDLE_EXECUTOR_TIMEOUT attribute, 2-41
MAX_EXECUTORS attribute, 2-41
mechanisms used to set user names, 2-43
MIN_EXECUTORS attribute, 2-41
output, 4-70
SET VERIFY command, 4-71
shared memory size, 2-14
SHOW SETTINGS command, 4-84
showing, 4-84
verification, 4-71
verify, 4-71

Setting up
dispatchers, 2-17
security, 2-24
services, 2-18

Shared memory size, 2-14
SHOW CLIENTS command, 4-72
SHOW commands

monitoring server activity, 3-1
SHOW CONNECTS command, 4-76
SHOW DISPATCHER command, 4-77
SHOW SERVER command, 4-79
SHOW SERVICE command, 4-81
SHOW SETTINGS command, 4-84
SHOW VERSION command, 4-85
Showing

clients, 4-72 to 4-75

Index-6

configuration file, 4-64
connections, 4-76
dispatcher, 4-77 to 4-78
server, 4-79 to 4-80
service, 4-81 to 4-83
settings, 4-84
version, 4-85

SHUTDOWN DISPATCHER command, 4-86
SHUTDOWN SERVER command, 4-87
SHUTDOWN SERVICE command, 4-88
Shutting down

dispatcher, 2-8, 4-86
server, 2-6, 4-87
service, 2-11, 4-88

Software problems
reporting, 3-12

Solving server errors, 3-12
SQL initialization file, 2-43
SQLSRV_MANAGE client

definition, 1-4
SQLSRV_MANAGE utility

@ indirect command file, 4-11
closing output file, 4-29
exiting, 4-53
getting help, 4-56
killing executor, 4-57
offline management, 1-8
online management, 1-7
opening output file, 4-59
privileges needed, 1-6
running, 1-6
specifying input file, 4-9
specifying output file, 4-10
system management, 1-6

START DISPATCHER command, 4-89
START SERVER command, 4-90
START SERVICE command, 4-92
Starting

dispatcher, 4-89
server, 4-90 to 4-91
service, 4-92

Submitting software problem reports, 3-12
System management

copying a configuration, 2-7
deciding types of service, 2-31

dispatcher, 2-8
monitoring server activity, 3-1
offline, 1-7
online, 1-7
Oracle SQL/Services Manager GUI utility, 1-7
planning a server, 2-2
privileges needed, 1-6
server, 2-4
server system requirements, 2-2
service, 2-11
setting shared memory size, 2-14
setting up

dispatchers, 2-17
security, 2-24
services, 2-18

SQLSRV_MANAGE utility, 1-6
ways to manage server, 1-5

System user name for Oracle Rdb, 2-44

T
Transaction reusable database service, 2-22
Transaction reuse service, 2-19
Transport selection

dispatchers, 2-17
Types of reuse, 2-18

U
Universal service, 2-18, 2-31, 2-35

session reusable, 2-20
setting database access authorization, 2-32, 2-37,

2-40
versus database service, 2-31

Unknown users
authorizing, 2-35, 4-22, 4-43

USE privilege
granting, 4-54
revoking, 4-62

User name
connect user name, 2-32, 2-33, 2-37
operating system process, 2-43
Oracle Rdb current, 2-46
Oracle Rdb session, 2-45
Oracle Rdb system, 2-44

Index-7

Using an SQL initialization file, 2-43
Using external functions, 2-39
Utilities

system management, 1-5

V
Verifying command file input, 4-71
Version

SHOW VERSION command, 4-85

W
Winsock logging, 3-7

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Intended Audience
	Operating System Information
	Structure
	Related Documentation
	Conventions

	1 Introduction to an Oracle SQL/Services System
	1.1� Server Management Utilities
	1.1.1� Privileges Needed to Manage a Server
	1.1.2� Running the SQLSRV_MANAGE Utility
	1.1.3� Running the Oracle SQL/Services Manager GUI

	1.2� Online Versus Offline Server Management

	2 Managing an Oracle SQL/Services System
	2.1� Getting Started
	2.2� Planning an Oracle SQL/Services Server Configuration
	2.3� Managing Server Components
	2.3.1� Managing a Server
	2.3.2� Managing a Dispatcher
	2.3.3� Managing a Service

	2.4� Setting Shared Memory Size
	2.5� Setting Up Dispatchers and Transport Selection
	2.6� Setting Up Services and Types of Reuse
	2.6.1� Session Reusable Universal Services
	2.6.2� Session Reusable Database Services
	2.6.3� Transaction Reusable Database Services
	2.6.4� When to Use Session Reusable Versus Transaction Reusable Database Services

	2.7� Setting Up Security on Servers
	2.7.1� Client Identification and Authentication
	2.7.2� Service Access Authorization
	2.7.3� Database and Data Access Authorization
	2.7.4� How Server Security Tiers Work Together

	2.8� Deciding Which Types of Service to Provide to Clients
	2.8.1� Which Services to Provide?
	2.8.2� Setting Database Access Authorization?
	2.8.3� Specify a Default Connect User Name?
	2.8.4� Grant or Restrict Access to a Service?
	2.8.5� Provide Arbitrary or Predefined Access to Data?

	2.9� Considering Security for Selecting the Service Owner User Name
	2.9.1� Execution Environment for Database Requests
	2.9.2� Execution Environment for External Functions and Procedures
	2.9.2.1� External Functions and Procedures Executing in the Context of the Executor Process
	2.9.2.2� External Functions and Procedures Executing in the Context of an Independent Process

	2.10� Setting the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_ EXECUTOR_TIMEOUT Attributes
	2.10.1� Configuring a Fixed Number of Executors for a Service
	2.10.2� Configuring a Variable Number of Executors for a Service
	2.10.2.1� Starting New Executor Processes as They Are Needed
	2.10.2.2� Prestarting New Executor Processes Ahead of Increased Demand

	2.11� Using an SQL Initialization File
	2.12� Understanding Database Access Authorization Models
	2.12.1� Accessing an Oracle Rdb Database
	2.12.1.1� Operating System Process User Name
	2.12.1.2� Oracle Rdb System User Name
	2.12.1.3� Oracle Rdb Session User Name
	2.12.1.4� Oracle Rdb Current User Name

	2.12.2� Setting the Process User Name and the Oracle Rdb System User Name

	3 Maintaining an Oracle SQL/Services Server
	3.1� Monitoring Server Activity
	3.2� Monitoring Client Connections
	3.2.1� Client Connection States for Session Reusable Services
	3.2.2� Client Connection States for Transaction Reusable Database Services

	3.3� Recovering from Failures
	3.3.1� Monitor Process Failures
	3.3.2� Dispatcher Process Failures
	3.3.3� Executor Process Failures

	3.4� Isolating Problems
	3.4.1� Inspecting Log Files
	3.4.1.1� Oracle SQL/Services Client Logging
	3.4.1.2� ODBC Logging
	3.4.1.3� Winsock Logging
	3.4.1.4� Oracle SQL/Services Monitor Log File
	3.4.1.5� Oracle SQL/Services Dispatcher Log Files
	3.4.1.6� Oracle SQL/Services Executor Log Files

	3.4.2� Investigating Different Types of Problems
	3.4.2.1� Network Transport Problems
	3.4.2.2� User Authentication and Authorization Problems
	3.4.2.3� Executor Failures During Service Startup
	3.4.2.4� Executor Problems During Client Connect
	3.4.2.5� Executor Problems During Client Request Execution
	3.4.2.6� Server Failed Due to an Internal Error

	3.5� Solving Server Errors
	3.6� Reporting Software Problems

	4 Management Commands
	4.1� Syntax Conventions
	4.2� How SQLSRV_MANAGE Commands Work
	–input Switch
	–output Switch
	@ Command
	ALTER DISPATCHER Command
	ALTER SERVER Command
	ALTER SERVICE Command
	CLOSE Command
	CONNECT TO SERVER Command
	CREATE DISPATCHER Command
	CREATE SERVER Command
	CREATE SERVICE Command
	DISCONNECT SERVER Command
	DROP Command
	DROP SERVER Command
	EXIT Command
	GRANT USE ON SERVICE Command
	HELP Command
	KILL EXECUTOR Command
	OPEN Command
	RESTART SERVER Command
	REVOKE USE ON SERVICE Command
	SET CONFIGURATION_FILE Command
	SET CONFIRM Command
	SET CONNECTION Command
	SET OUTPUT Command
	SET VERIFY Command
	SHOW CLIENTS Command
	SHOW CONNECTIONS Command
	SHOW DISPATCHER Command
	SHOW SERVER Command
	SHOW SERVICE Command
	SHOW SETTINGS Command
	SHOW VERSION Command
	SHUTDOWN DISPATCHER Command
	SHUTDOWN SERVER Command
	SHUTDOWN SERVICE Command
	START DISPATCHER Command
	START SERVER Command
	START SERVICE Command

	Index

